总体x~E(),矩估计量,极大似然估计量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:30:36
总体x~E(),矩估计量,极大似然估计量
设总体X的概率密度为f(x),X1,X2……Xn是来自X的样本,求θ的矩估计量和最大似然估计量

L=f(x1)f(x2)...f(xn)=θ^n(1-x1)^(θ-1).(1-xn)^(θ-1)..lnL=nlnθ+(θ-1)[ln(1-x1)(1-x20...(1-xn)]dln/dθ=n/θ

问一个概率论里的题目“已知总体X服从均匀分布[0,θ],求矩法估计和极大似然估计,如果是有偏,请改为无偏”两个估计都会求

见图再问:你好,你的答案前面和后面我都仔细看懂了,X(n)的概率密度为什么是nX(n-1)/θ(n)?真诚期待你的答案。再答:你看看教材吧。最大次序统计量的概率密度如何求,教材上明明白白地写着啊。在独

设X1,X2...,Xn是取自总体X~E(X)的一个样本,求样本X1,X2...Xn的联合概率密度;求总体参数λ的矩估计

首先应该是e(入)fxi(xi)=入e^(-入xi)i∈{1,2,...n}把所有乘一起,设联合密度=pp(x1,x2,x3.,xn)=入^ne^(-入nx)注意下面这个E(X)是期望值E(X)=1/

题干如下:设总体X的概率密度为f(x;μ,θ)=(1/θ)*e^(-(x-μ)/θ),试求μ,θ的矩估计量

答案不是挺清楚的么,E(X^2)就是E(x)的被积函数乘1个x,再积分就行了再问:是具体的积分过程不清楚,望告知。再答:这个写起来真的太长了。。。你可以设t=(x-μ)/θ,替换以后积分会稍微轻松一点

设总体为指数分布,已知概率密度函数求参数的矩估计和极大似然估计的解题步骤

设X~EXP(入)E(X)=1/入^入=1/(xbar)L(入|x)=π(连乘符号)(i=1~n)入e^(-入xi)两边取对数,并使ln(L)=ll(入|x)=ln(入^n)+(-入)Σ(xi)求导l

设总体X服从参数为λ的泊松分布,其中λ为未知参数.X1,X2,...,Xn为来自该总体的一个样本,则参数λ的矩估计量为?

X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.

设总体X的概率密度为,求极大似然估计量

套用公式计算,经济数学团队帮你解答.请及时评价.再问:这一步是怎么的,看不懂  谢谢了再答:

设X1,X2,...Xn为来自正态总体X~N(μ,σ^2)的一个样本,μ已知,求σ^2的极大似然估计.

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f

求Ө的极大似然估计,设总体X的概率密度为f(x

设总体X的概率密度为f(x)=Өx^(Ө-1),0

总体X~B(n,p),X1,X2,…,Xn为其样本,求n及p的矩估计量

用样本算出均值与方差,另一方面,其均值与方差分别为np,np(1-p),即可算出

关于方差存在的总体X,X1、X2...Xn是取自总体的简单随机样本,EX^2的矩估计量的问题

矩估计并不要求无偏估计,矩估计的要求就是用样本矩来代替总体矩,σ²是二阶中心矩,S²不是中心矩,因此矩估计时一般选σ²,这是符合矩估计定义的.而且在一次实验中其实也很难确

181.设总体 的密度函数为 其中 为未知参数.为总体的一个样本,求参数 的极大似然估计量.

极大似然估计的方法:1、构造似然函数,L(x1,x2,...,xn)=每个Xi密度函数的连乘.每个Xi的密度函数与总体的密度函数相同.2、求L(x1,x2,...,xn)或lnL(x1,x2,...,

设总体x服从二项分布B(N,P),其中N已知,试求参数p的矩估计量和极大似然估计量

E[X]=NP;Var[X]=NP(1-P);矩估计:总体的一阶原点矩为E[X]=NP;样本的一阶原点矩为_X,用样本估计总体,有^p=_X/N;极大似然估计:^p=_X/N;

概率论题目求解矩估计量和极大似然估计量

用公式计算即可,经济数学团队帮你解答.请及时评价.

设X1,X2,.Xn是来自概率密度为 的总体样本,θ未知,求θ的矩估计和极大

矩估计E(x)=∫(-∞,+∞)f(x)xdx=θ/(1+θ)X'=Σxi/n=E(x)=θ/(1+θ)θ=x'/(1-x'),其中Σxi/n最大似然估计f(xi.θ)=θ^nx1^(θ-1)x2^(