aii=a,aij=1,当a=0时求∑A1j
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:09:42
n=2的时候直接把A*写出来验证n>2的时候看A*的秩就行了,A^T=A*=>rank(A^T)=rank(A*),只有零矩阵和满秩矩阵才满足这一点.还有一种方法是利用(A*)*=|A|^{n-2}A
|A|=1*2.*3=6,trA=1+2+3=6λ(A*)=|A|/λ=6.3.2即A*有3个不同特征值,可以对角化,即A*~ΛA11+A22+A33=trA*=trΛ=2+3+6=11
行列式定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和a21A21+a22A22+a23A23=|A|=2推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和
这要用到两个结论,第一,|AB|=|A||B|,第二,|A^T|=|A|,所以等式左边去行列式为|AA^T|=|A||A^T|=|A|^2
由于方阵A:a11a12...,a1n的伴随矩阵A*为A11A21.An1a21a22...,a2nA12A22.An2..........an1an2...,annA1nA2n.Ann由于aij=A
由条件Aij+aij=0(i,j=1,2,3),可知A+A*T=0,其中A*为A的伴随矩阵,从而可知|A*|=|A*T|=|A|3-1=(-1)3|A|,所以|A|可能为-1或0.但由结论r(A*)=
a11+1a12+2a13+3|B|=a21+1a22+2a23+3a31+1a32+2a33+3将这个行列式拆成2³个行列式的和,只有4个不为0(还有4个有对应列成比例,所以为0)a11a
由已知,A*=A^T所以AA*=AA^T=|A|E两边取行列式得|AA^T|=||A|E|所以|A|^2=|A|^3|E|=|A|^3.(*)又因为A≠0,所以存在aij≠0由等式AA^T=|A|E知
因为aij=Aij,所以|A|=|A*|由A^(-1)=A*/|A|得|A|A^(-1)=A*两边取行列式|A|³|A^(-1)|=|A*||A|³/|A|=|A||A|=1
由A正交得AA'=E.即A^(-1)=A'.等式两边求行列式得|A|^2=1.由已知A的行列式大于零,所以|A|=1.所以有AA*=|A|E=E.所以A^(-1)=A*.所以A*=A'.即Aij=ai
对比A^T的各个元素即得Aij=aij再问:Aij是代数余子式,而aij只是一个数,它们的计算结果明显不同,还是不懂,能解释一下吗再答:代数余子式是一个数值
由已知,|A|=2*3*4=24所以A*的特征值为12,8,6所以A11+A22+A33=12+8+6=26
本题可以这样证,A的伴随矩阵A*(j,i)位元素为aij代数余子式Aij,由此可见,你给的题目是A的每一个元素aij等于它的代数余子式,即aij=Aij,得到A=(A*)'换种写法是A*=A'其中'是
所求行列式=012…n-2n-1101…n-3n-2210…n-4n-3……………n-2n-3n-4…01n-1n-2n-3…10rn-r(n-1),r(n-1)-r(n-2),…,r2-r1012…
证:由A正定,对任意非零n维列向量x,都有f(x)=x'Ax>0.特别取x=εi=(0,...,0,1,0,...,0)',--第i个分量为1其余为0则有f(εi)=εi'Aεi=aii>0.
n阶矩阵A=(aij)n×n.其中aij=1i.j=12…n.说明A的元素全为1,它显然是对称的,而对称矩阵必定可以对角化(一般教材中均有此结论)但是我猜提问者还会不满足,那么就展开多说几句:如果能够
刚才在纸上画了一下,但是现在没心情慢慢的给你敲一个行列式出来只能告诉你,首先,分两种情况,第一n=2k第二n=2k+1,此时a=b/2然后分别求都是设N阶行列式的值为f(n),然后展开,得到一个递推公
(A)=1因为,从第i=2行开始,每行减ai1*第1行都将变为0,也就是说,所有的行向量都与第一行的行向量成比例