AE平分∠BAC,CE平分∠ACD,且∠1 ∠2=90°,直线AB与CD平分吗?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:09:13
证明:∵AE⊥CE∴∠E=90∴∠CAE+∠ACE=180-∠E=90∴2∠CAE+2∠ACE=180∵AB‖CD∴∠BAC+∠ACD=180∵AE平分∠BAC∴∠BAC=2∠CAE∴∠BAC+2∠A
AB‖CD,那么∠BAC+∠ACD=180∠EAC=(1/2)∠BAC∠ECA=(1/2)∠ACD所以∠EAC+∠ECA=(1/2)∠BAC+(1/2)∠ACD=(1/2)(∠BAC+∠ACD)=(1
因为AECE平分∠BAC和∠ACD所以∠1=∠BAE,∠2=∠DCE又因为∠1和∠2互余所以∠1+∠2=90°所以∠BAC+∠DCA=180°所以AB//CD第二题,因为∠ACE=∠BDF所以∠ECB
∵CD=DF∴∠DCF=∠DFC∵∠DFC=∠AFE∴∠DCF=∠AFE∵CE⊥AB∴∠AFE+∠BAD=90°∠EBC+∠DCF=90°∴∠BAD=∠EBC∴BD=AD
证明:∵AB∥CD,∴∠BAC+∠ACD=180°,∵AE平分∠BAC,CE平分∠ACD,∴∠EAC=12∠BAC,∠ACE=12∠ACD,∴∠EAC+∠ACE=12(∠BAC+∠ACD)=90°,∴
∠DAE=90°-(∠B+1/2∠A)=90°-(∠B+1/2(180°-∠C-∠B))=90°-∠B-90°+1/2∠C+1/2∠B=1/2∠C-1/2∠B=1/2(∠C-∠B)
因为∠CAE=∠BAC/2=∠B,∠C=∠C所以△CAE∽△CBA可知AE/AB=CE/AC所以AE/CE=AB/AC=2所以AE=2CE
(1)证明:过点E作EM⊥BC,EN⊥AC,EQ⊥BA∵BE平分∠ABC,CE平分∠ACG∴EM=EQ,EM=EQ(角平分线的性质定理)∴EQ=EQ∵EN⊥AC,EQ⊥BA∴AE是∠PAC的平分线(角
1证明因为AB//CD所以∠BAC+∠ACD=180度因为AE平分∠BAC,CE平分∠ACD所以∠1=1/2∠BAC∠2=1/2∠ACD所以∠1+∠2=90度2证明过E做EF//AB因为EF//AB所
AE平分∠BAC理由:因为ab平行cd,所以∠bac+∠acd=180°又因为∠aec=90,所以∠ace+∠cae=90所以∠bac+∠acd=∠bae+∠cae+∠ace+∠dce即:∠bae+∠
证明:因为ab平行cd,所以∠bac+∠acd=180°又因为∠aec=90,所以∠ace+∠cae=90所以∠bac+∠acd=∠bae+∠cae+∠ace+∠dce即:∠bae+∠dce=90因为
AB∥CD因为AE⊥CE所以∠EAC+∠ECA=90°又因为角平分所以∠CAB+∠ACD=180°互补同旁内角
作EF垂直BA延长线于F,EG垂直AC于G,EH垂直BC延长线于H因为BE平分∠ABC,推出EH=EF因为CE平分∠ACB的外角,推出EH=EG所以EF=EG又有公共边AE,所以直角三角形AFE和AG
原题:如图,在三角形ABC中,AD平分角BAC,BE平分角ABC,CE平分角ACB的外角, 求证:(1)AE是角BAC外角的平分线 (2)AE垂直AD证明:
∵AB∥CD,AE平分∠BAC,CE平分∠ACD,又∠BAC+∠DCA=180°⇒∠CAE+∠ACE=12(∠BAC+∠DCA)=90°,∠E=180°-(∠CAE+∠ACE)=90°,∴∠E=90°
证明:∵AE平分∠BAC∴∠BAE=∠CAE∴∠BAC=∠BAE+∠CAE=2∠CAE∵CE平分∠ACD∴∠ACE=∠DCE∴∠ACD=∠ACE+∠DCE=2∠ACE∵AB‖CD∴∠BAC+∠ACD=
平行.因为AE平分∠BAC,CE平分ACD,所以∠EAB=∠1,∠ECD=∠2,又因为∠1+∠2=90,所以∠EAB+∠1+∠ECD+∠2=180°,即∠ACD+∠CAB=180°,所以AB平行CD(
证明:∵AB∥CD,∴∠BAC+∠ACD=180°,∵AE平分∠BAC,CE平分∠ACD,∴∠1=12∠BAC,∠2=12∠ACD,∴∠1+∠2=12(∠BAC+∠ACD)=12×180°=90°.
因为AE平分∠BAC,所以∠1=∠BAE=50°又CE平分∠ACD所以∠2=∠DCE还有AB∥CD所以同旁内角互补也就是(∠BAC)+(∠DCA)=180°于是(∠1+∠BAE)+(∠2+∠DCB)=
证明:∵AB=AC,∠BAD=∠CAE,AD=AE∴△ABD≌△ACE∴∠ABD=∠ACE∵∠EOB=∠DOC,EB=DC∴△EOB≌△DOC∴∠EBO=∠DCO,OB=OC∵AB=AC∴△BAO≌△