微分方程y′′-y′-2y=xe的-x待定系数法

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:04:55
微分方程y′′-y′-2y=xe的-x待定系数法
微分方程dy/dx=y/(x+y^2)的通解?

设t=x/y则x=tydx=tdy+ydtdy/dx=y/(x+y^2)=>dx/dy=x/y+y把dx代入t+ydt/dy=t+yydt/dy=ydt/dy=1t=y+C(C是常数)x=y^2+Cy

高数.微分方程y′=10∧(x+y)求通解.

y′=10^(x+y)=10^x*10^ydy/10^y=10^xdx通解为:(1/10)^y/(-ln10)=10^x/ln10+C1(1/10)^y=-10^x+C

微分方程 dy/dx=(-2x)/y

ydy=-2xdx积分y²/2=-x²+C'所以y²=-2x²+C

解微分方程y"+y'=x^2

e^x(y''+y')=x^2e^x(y'e^x)'=x^2e^x两边积分:y'e^x=∫x^2e^xdx=x^2e^x-∫e^x*2xdx=x^2e^x-2xe^x+2∫e^xdx=x^2e^x-2

求微分方程2y″+y′-y=2ex的通解.

∵微分方程两边除以2,得同解的微分方程y″+12y′−12y=ex对应的齐次方程为y″+12y′−12y=0∴特征方程为r2+12r−12=0,解得特征根为:r1=−1,r2=12∴齐次方程的通解为:

求微分方程y'= 1/(2x-y^2)通解

∵y'=1/(2x-y²)∴dx/dy=2x-y².(1)∵齐次方程dx/dy-2x=0的特征方程是r-2=0,则r=2∴齐次方程dx/dy-2x=0的通解是x(y)=Ce^(2y

解下面两个常微分方程:1.dy/dx=(y/x)[1+ln(y/x)] 2.xy′-y=(x+y)ln[(x+y)/y]

(1)令y/x=t,则y=tx,dy=xdt+tdx原方程化为:xdt/dx+t=t+tlntxdt/dx=tlntdt/(tlnt)=dx/x两边积分:ln|lnt|=ln|x|+Clnt=Cx(C

y′-(x分之2)y=x³求一阶线性微分方程

dsolve('Dy-2*y/x=x^3','x')ans=1/2*x^4+x^2*C1

求微分方程y″-2y′-3y=3x+1+ex的一个特解.

微分方程y″-2y′-3y=3x+1+ex的特征方程为:λ2-2λ-3=0,求解可得其特征值为:λ1=-1,λ2=3.对于微分方程y″-2y′-3y=3x+1,①由于0不是方程的特征根,故其特解形式为

y′ =10^(x+y) 急求这道高数题微分方程的通解.

dy/dx=10^x*10^y10^(-y)dy=10^xdx积分得:-10^(-y)/ln10=10^x/ln10+C1化简得通y=-lg(C-10^x)

求微分方程y″-3y′+2y=2xex的通解.

对应齐次方程y″-3y′+2y=0的特征方程为λ2-3λ+2=0,解得特征根为λ1=1,λ2=2.所以齐次微分方程y″-3y′+2y=0的通解为y1=C1ex+C2e2x.因为非齐次项为f(x)=2x

求微分方程y″-3y′+2y=xex的通解.

微分方程y''-3y'+2y=xex对应的齐次微分方程为y''-3y'+2y=0特征方程为t2-3t+2=0解得t1=1,t2=2故齐次微分方程对应的通解y=C1ex+C2e2x因此,微分方程y''-

求微分方程y''-y'+2y=e^X通解

特征方程R^2-R+2=0,特征方程的解为R1=-1,R2=2;微分方程特解为C1e^(-x)+C2e^(2x);特解为1/2e^x;通解为y=C1e^(-x)+C2e^(2x)+1/2e^x;C1,

微分方程y'=x/y的通解

楼上的答案完全正确.

求解一阶线性微分方程y′-2/x*y=x^3

两边同除以x^2y'/(x^2)-(2/x^3)y=x通分(xy'-2y)/(x^3)=x[y/(x^2)]'=x积分y/(x^2)=(1/2)x^2+Cy=(1/2)x^4+Cx^2

解微分方程 y'=[e^(y^2)]/2xye^(y^2)+4y,y|(x

分式线下的代数式请加括号,否则有歧义!再问:再问您一道题e^y(dy/dx)+1)=1再问:我用分离变量算了,就是跟答案不一样再问:您帮忙写一下详细过程再答:是否是e^y(dy/dx+1)=1?若是,

微分方程的一道题 y''(x+y'^2)=y'

这样解设y'=dy/dx=t,y''=d2y/dx2=dt/dx,带入得到t'(x+t^2)=t这样可以化成恰当方程dt=dx/t-x/t^2*dt=d(x/t)解得y'=t=(自己会算吧~)再积分一

微分方程y′=y的通解

dy/dx=y(1/y)dy=dx两边积分后得ln丨y丨=x+cy=±e^(x+c)所以通解为y=ce^x

高数 微分方程求解! y″-y′-x=0

y″-y′=x,特征方程a^2-a=0的根为0,1,齐方程的通解为:y=C1+C2e^x因为0是根,设特解为:Y=x(Ax+B),代入得:A=1/2,B=-1所以:通解为y=C1+C2e^x+x(1/