得到矩阵特征值后怎么求基础解系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:33:50
得到矩阵特征值后怎么求基础解系
线性代数,已知特征值和对应特征向量,怎么求原矩阵

以它的特征值为对角元素构造对角矩阵B,以相应的特征向量为列向量,构造矩阵P,则AP=PB,所以A=PB(P逆)

线性代数求基础解系,图中这两个矩阵怎么求基础解系.怎么人家一眼就看出秩等于几,然后求出基础解系.

以左边为例,先把5变成1,然后-2-4能变成0,然后把3变成1,最后5就成0了.然后秩就是2,基础解系自然就出来了.建议楼主多看书,多练习,李永乐的线代讲义很不错

关于矩阵特征值的求法,怎么用MATLAB软件求?

A1 =[ 1, 1/3, 1, 1/5, 1/4][ 3,   1, 2, 1

求教:求矩阵特征值时怎么化行列式简便.

没有太好的方法,主要是使用行列式的性质(和矩阵初等变换很像的三个行列式的性质),把行列式化成上三角形(或下三角或对角),在把对角线元素相乘即为行列式的值.本题中,应把1行和3行交换,在用第1行第1列把

特征向量与特征值已知,怎么求原矩阵?

特征量作为列向量组成一个可逆矩阵P,相应的特征值作为对角线元素组成一个对角矩阵B,则AP=PB,所以A=PB(P逆),入18题如果矩阵A对称,则已知条件中的特征向量不必全部给出,根据不同特征值对应的特

matlab矩阵求特征值

eig(a)一句命令搞定再问:你算算呗,就是用的这个算出来好像错的。再答:错的、??你怎么知道???再问:因为特征向量都为负的,你算算看得多少再答:手算???再问:因为特征向量都为负的,你算算看得多少

这是书上例题的一道求矩阵的全部特征值和特征向量的题,但我不懂的是求基础解系的部分:

不好意思,这两天有事没上网. 齐次线性方程组的基础解系不是唯一的,两个基础解系都对只要满足:是Ax=0的解线性无关个数为n-r(A)则都是基础解系

知道矩阵的特征值和特征向量怎么求矩阵

由于Aα1=λ1α1,Aα2=λ2α2,所以A[α1α2]=[α1α2]diag(λ1λ2),其中[α1α2]为由两个特征向量作为列的矩阵,diag(λ1λ2)为由于特征值作为对角元的对角矩阵.记P=

已知逆矩阵的特征值,怎么求矩阵的特征值

矩阵的特征值等于逆矩阵特征值的倒数,反过来也一样,记住这个定理哦

怎么求矩阵的特征值与特征向量

A-vE=|3-v1|=v^2-2v-8=(v-4)(v+2)|5-1-v|特征值为:4,-2.对特征值4,(-11;5-5)*(x1,x2)'=(0,0)'对应的特征向量为:(1,1);对特征值-2

这个矩阵的n次方怎么求?(用特征值)

第一步,求特征值第二步,求特征向量,对应可逆矩阵具体请看图片再答:再答:

这个矩阵的特征值和特征向量怎么求

|A-λE|=1-λ2321-λ3336-λr1-r2-1-λ1+λ021-λ3336-λc2+c1-1-λ0023-λ3366-λ=(-1-λ)[(3-λ)(6-λ)-18]=(-1-λ)[λ^2-

矩阵特征值的基础解系 怎么求出来的?如图线性代数矩阵特征值求解

再问:谢谢。但是怎么确定α1、α2分别取1和0的呢?再答:这种题有一个固定的套路,当你求出x1.x2.x3的函数关系时,一般就是分别取(1,0,x3)和(0,1,x3)再问:再问:谢谢。那这个题的基础

线性代数 矩阵求特征值

|A-λE|=17-λ-2-2-214-λ-4-2-414-λr3-r217-λ-2-2-214-λ-40λ-1818-λc2+c317-λ-4-2-210-λ-40018-λr2-2r117-λ-4

求齐次线性方程组基础解中,把系数矩阵转化为最简行矩阵后,怎么就得到了同解方程组?

最简行矩阵的每一行对应一个方程,方程中未知量的系数就是此行的数比如0102对应方程x2+x4=00013x3+3x4=0有疑问请消息我或追问满意请采纳^_^再问:此行的数是什么意思?还是不懂啊,x2+

求矩阵的特征值和特征向量,为什么要求基础解系呢?还有就是怎么求的,

特征向量是相应齐次线性方程组的非零解如果这不清楚的话,建议你系统地看看教材,注意以下结论:1.λ0是A的特征值|A-λ0|=02.α是A的属于特征值λ0的特征向量α是齐次线性方程组(A-λ0E)X=0

线性代数求基础解系,这两个矩阵该怎么求啊,

方程不给出没法求到底是齐次还是非其次

矩阵的基础解系怎么求?

A是一个n阶方阵,r(A)=n-1所以AX=0的基础解系的解向量的个数为1又A的每一行元素加起来均为1则A(1,1,...,1)^T=(1,1,...,1)^T所以x=(1,1,...,1)^T是AX