AB直线是圆心O的直径,角C等于30度,则角ABD的度数为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:15:47
AB直线是圆心O的直径,角C等于30度,则角ABD的度数为
如图 AB是圆心O的直径 AB=10 DC切圆心O于点C AD垂直DC 垂足为D AD交圆心O于点E

因为,DC切圆心O于点C,所以OC垂直DC,又AD垂直DC.所以OC平行于AD.根据平行线的性质,所以∠BAD=∠BOC.又根据圆周角定理:同弧所对圆周角是圆心角的一半.所以2∠CAB=∠BOC=∠B

初三圆 知识问题如图,AB是圆心O的直径,且AB=10,直线CD交圆心O与C、D两点,交AB于E,OP垂直CD与P,角P

连接OD在直角三角形OPD中,OD=1/2AB=5,OP=根号2,所以PD=根号(OD2-OP2)=根号23根据垂径定理,CD=2PD=2根号23有条件没有用到,你确定题没错吧.解法就这样.

如图,AB是圆心O的直径,AB=8CM,C,D是半圆上

连接OC,交AD于E.因为C、D是三等分点,所以OC垂直AD,平分AD.所以三角形ACE全等于三角形ODE.阴影部分面积S=扇形OCD的面积圆心角60度,半径4CM,代公式得面积S=8pai/3

在RT三角形ABC中,角C=90度,以AC为半径的直径的圆心O与斜边AB相交于点E,OD平行AB,连接ED,则直线ED与

∵OD//AB,∴〈COD=〈A,(同位角相等),〈EOD=〈OEA,(内错角相等),∵OA=OE=R,∴三角形OAE是等腰三角形,则〈A=〈OEA,则〈COD=〈EOD,∵CO=OE=R,OD=OD

AB为圆心O的直径,PQ切圆心O于T,AC⊥PQ于C,交圆心O于D.

(1)证明:连接OT.∵OT=OA∴∠OTA=∠OAT∵PQ切圆O于T∴∠OTC=90°∵∠ACT=90°∴∠OTC+∠ACT=180°∴OT平行于AC,∠OTA=∠TAC∴∠TAC=∠OAT∴AT平

已知直线PA交园心O于A、B两点,AE是圆心O的直径,点C为圆心o上一点,且AC平分角PAE.过C作cD垂直PA,垂足为

连接OC..∵点C在⊙O上,OA=OC,.∴∠OCA=∠OAC..∵CD⊥PA,.∴∠CDA=90°,则∠CAD+∠DCA=90°..∵AC平分∠PAE,.∴∠DAC=∠CAO..∴∠DCO=∠DCA

圆及垂径定理的题如图 条件不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F为什

平行线等分线段定理:一组平行线在一条直线上截得的线段相等,则在其他直线上截得的线段也相等.注::这个定理是平行线截线段成比例定理(即一组平行线与其他的直线相交,所截得的对应线段成比例)的推广,现在初中

已知AB是圆O的直径,直线CD与圆O相切于点C,AC平分角DAB

1.证明:连接OC则OA=OC,OC⊥CD∴∠OAC=∠OCA∵AC平分∠DAO∴∠OCA=∠OAC=∠CAD∴AD‖OC∴AD⊥CD2.连接BC∵∠DAC=30°∴∠BAC=30°∵AB是直径∴∠A

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A,B的任意一点,直线PA

(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x

直线和圆:如图,AB是半圆(圆心为O)的直径,OD是半径,BM切半圆于点B,OC与弦AD平行,且交BM于点C.

因为OC与弦AD平行,所以角ADO=角DOC,角COB=角DAO因为OD=OA=OB所以角DAO角ADO=角DOC=角COB因为CO=CO所以三角形DCO与三角形BCO全等所以角ODC=角OBC因为C

如图,已知AB是圆心O的直径,点D在AB的延长线上,DC是圆心O的切线,切点为C,已知角ACD=120度,BD-5cm,

∠ACD=120°∠OCD=90°△ABC为直角三角形AB为直径∠ACB=90°∠ACO=∠ACD-∠ACB=30°∠BCD=30°∠CAB=∠ACO=30°∠D=180°-∠CAD-∠DCA=180

如图,已知CD是圆心O的直径,AB垂直于CD,垂足为C,弦DE//OA,直线AE、CD相交于点B.

(1)证明:连接OE,∵DE∥OA,∴∠COA=∠ODE,∠EOA=∠OED,∵OD=OE,∴∠ODE=∠OED,∴∠COA=∠EOA,又∵OC=OE,OA=OA,∴△OAC≌△OAE,∴∠OEA=∠

图是一个半圆半径任意只要大于〇,直径是AB圆心是O,CDE在圆上,角AOC=角BOD.直线PE过圆心,并垂直直径AB,连

P点没有要求吗?能不能给个图.如果加上你的补充的话,可以用反证法证明,假设存在这个P点,然后再根据圆心角是圆周角的二倍可以很简便的证明出来,相信你能理解的.如果还是不懂的话那就再说吧.假设点P就在圆上

△ABC内接于圆心O,AB是圆心O的直径,点D在圆心O上,过点C的切线交AD的延长线于点E,且AE垂直,连接CE、CD

这位同学你的题目表的有些小问题,我现在重新叙述一遍题干,你看看是不是和你要表达的意思一样:△ABC内接于圆O,AB是圆O的直径,点D在圆O上,圆O过C点的切线交AD的延长线于点E,且AE垂直于此切线,

△ABC内接于圆心O,AB是圆心O的直径,点D在圆心O上,过点C的切线交AD的延长线于点

本题中应该漏掉了条件:------------------CE垂直AE.(1)证明:连接OC.∵CE为切线.∴OC⊥CE;又AE⊥CE.∴OC∥AE,则∠OCA=∠CAD;又OC=OA,∠OCA=∠C

ab是圆心o的直径,弦pq垂直于ab于c,弦qr交ab于s,求证:pb平分角spr

证明:延长PS交圆O于T,连接QT∵PQ⊥AB,AB是圆O的直径∴AB垂直平分PQ【垂弦定理】∴SP=SQ∴∠TPQ=∠RQP∴弧QT=弧PR【相等圆周角所对的弧相等】∵弧BP=弧BQ【直径平分垂直的

AB是圆心O内的一条弦,CD为圆心O的直径,且CD⊥AB,垂足为点M,过点C作直线交AB所在直线于点E,叫圆心O于点F.

你是不是写错题目了,“叫圆心o于点f”应该是“交圆于点f”第一问:∠CEB与∠FDC的数量关系是相等,你画个图就知道啦第二问:这些简单的三角转换,太简单了,只要画出图来,两个共角的三角行的角一定相等啦

以线段AB为直径作一个半圆,圆心为O,C是半圆上一点,且OC平方=AC乘以BC,求角CAB的正弦.

半圆所以为直角三角形设AB即直径doc为中线0c=1/2*dAC*BC=1/4*d^2直角三角形中AC^1+BC^2=AB^2=d^2所以AC=1/2*[(根号3/2)*d+(根号1/2)*d]BC=