AB是圆得直径,c为圆上一点,AE和过点c的切线互相垂直

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:20:50
AB是圆得直径,c为圆上一点,AE和过点c的切线互相垂直
如图,AB是半圆O 的直径,点c是圆O上一点,连接ac,ab

的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°

如图 已知AB是圆O的直径,C为圆周上一点,求证:∠ACB=90°

连结OC,∵OA,OB,OC都是圆的半径,∴△OAC和△OCB为等腰三角形;等腰△两底角相等,故有∠OAC=∠OCA,∠OBC=∠OCB;又∵三角形内角和为180°,∴∠ACB=∠OCA+∠OCB=9

急!如图 ab是半圆o的直径,C为圆上一点,过C作半圆的切线

①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A

如图,ab为园o的直径,c是圆o上一点,p是圆o外一点,op//bc,角p=角bac

(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△

如图所示,AB是圆O的直径,点C是弧AB的中点,D为圆O上一点,求角ADC的度数

已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9

如图,点C为以AB为直径的半圆上一点,且AB=10,AC=8,D是直径AB上的一动点,圆D切BC于点E,交AB于点F,

第二问只能用公式tan2α=(2tanα)/(1-tan²α),算出来是1/3,抱歉,实在是不会用初中的方法.第三问由三角形BDE与三角形BAC相似列式,BD/AB=DE/AC,DE=4x/

如图,AB是圆O的直径 C为圆O上一点,AD和过C点的切线相交于点D

1、连接BC,∠DCA=∠CBA,从而证明三角形DAC相似于三角形CAB,于是∠ADC=∠ACB=直角2、AD:AC=AC:AB,所以ACxAC=80,AC的长度就是把80开方就行了

已知圆O的半径为6,AB是圆O的一条直径,C是直径AB上的一点,过点C作CD垂直AB,交圆O于点D,若CD等于三倍根号3

①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+

如图,AB为圆O的直径,C是圆O上一点,点D在AB的延长线上,且角DCB=角A

(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&

已知ab是圆o的直径,p为ab上一点,c,d为圆上两点在ab同侧,且∠cpa=∠dpb,求证:c,d、p、o四点共圆

已知AB是圆O的直径,P为AB上一点,C,D为圆上两点在AB同侧,且∠CPA=∠DPB,求证:CDPO四点共圆延长直径AB,延长CD,相交于S.延长CP交圆O于M.延长DP交圆O于N.因为AB是直径,

AB是圆O直径,C是圆O上一点,CD⊥AB于D,E为线段CD上一点,直线AE交圆O于E.求证AC²=AE*AF

连BFAB是圆O直径,C,F是圆上的点角ACB,角AFB都是直角.直角三角形ABC中,CD⊥AB于DAC^2=AB*AD射影定理直角三角形ABF与AED中角FAB=角EAD角AFB=角ADE三角形AB

AB是圆O的直径,C是圆O上一点,CD垂直AB,垂足为D,CD=4,BD=2

三角形BCD为直角三角形,则BC=根号20;COSB=BD/BC=2/根号20;三角形ABC为直角三角形,COSB=BC/AB=根号20/AB=2/根号20;解得AB=10;半径R=AB/2=5AC=

16.如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过ΔABC的内切圆圆

第一个为(根号5):2(这个比较简单,不用说了)第二个;设AD=x,BD=y则xy=100,AC=x+4,BC=y+4所以(x+y)²=(x+4)²+(y+4)²整理得:

求几何题解法如图,AB是圆的直径,D是弧AB上的一点,C是弧AD的中点,AD BC 相交于点E,CF⊥AB,F为垂足,C

∵C是弧AD的中点∴∠B=∠CAD∵CF⊥AB∴∠B+∠BCF=90º①∵AB是圆的直径∴∠ACB=90°∠CAD+∠AEC=90º②∴∠BCF=∠AEC∴CG=EG

如图 p是线段ab上一点分别以AP,BP为直径作圆

(1)S=π*(x/2)²+π*(a/2-x/2)²=π(a²/4-ax/2+x²/2)(2)x=a/3,S1=5πa²/36x=a/2,S2=πa&

如图,AB是圆O直径,C为圆O上的一点,AD垂直CD,且AC平分角BAD.求证:CD是圆O的切线.如图,AB是圆O直径,

因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=