AB是圆O的直径,DE⊥BC于E,AC交圆O于D(1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 13:52:28
证切线有三种办法①与圆只有一个交点的直线(不太常用)②有已知交点,连半径,证垂直(根据切线判定定理)③无已知交点,作垂直,证半径(根据直线与圆的位置关系,d=r)第一题已知交点D,所以想到连半径所以只
连接OD交BC于F.连接OC(1)在⊿BOF和⊿COF中因弧BD=弧CD,则∠BOD=∠COD(等弧对等角),即∠BOF=∠COF又OB=OC(半径相等)且OF=OF所以⊿BOF≌⊿COF,得BF=C
连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B
连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B
EP/BC=AE/ABED/BC=AE/OB显而易见的可以看出ED=2EP哪里看不懂,可以继续问.
证明:连结OD,因为BD=CD,OB=OA,所以OD为三角形ABC中位线,所以OD平行于AC,因为DE⊥AC,所以DE⊥OD,点D在圆上,OD为半径,所以DE是圆O的切线
连接OE,∵AD∥OC,∴∠DAO=∠COB∴∠DOC=∠COB∴∠DAO=DOC∴DE弧=BE弧
我可能证明的不对,但是还是说一下吧.麻烦在草纸上重新画图证明:连接DO、AD得DO为圆O的半径∴∠ABD=∠ODB又∵AB=AC∴∠ABD=∠ACB∵DE⊥AC∴∠ACB+∠EDC=90°∴∠BDO+
1、AB=AC连接OD∵OB=OD∠ABD=∠BDO=∠BCF∴OD//CF∵DE⊥CF∠ODE=90°∴DE切圆2、∵△DEF≌△CDE∴EF=CE=4/5×CD=4/5×BD=4/5×4/5×AB
1,易证DO//AC,因为DO为为三角形BCA两腰的等分线,所以由DE⊥AC→DE⊥DO,故DE是圆的切线.2,连AD,则AD是BC的中垂线,所以△ABD≌△ACD,所以∠ABD=∠ACD=30°,C
连接AD,则AD⊥BC∵AB=AC,∴D是BC的中点又O是AB的中点,∴OD‖AC∵DE⊥AC,∴OD⊥DE故DE是圆O的切线
(1)证明:连接BC、ODAB为直径,则∠ACB=90,BC⊥ACDE⊥AC,∴DE‖BCD是弧BC中点,根据垂径定理,OD⊥BC.∴OD⊥DEDE是圆的切线(2)连接AD.∠CDE为弦切角,∠DAE
连接OD,在三角形BOD和三角形BAC中,BO=OA,BD=DC(已知条件),由中位线定理,易得OD平行于AC.又因为角DEA=90度,得角ODE=90度,即OD垂直于DE,由切线判定定理易知DE为圆
楼主你是不是仪中的啊再问:是啊怎么了再答:metoo,我也不会做再问:啊哈啊哈啊哈额。。。。。。。。。。。再答:楼主你QQ可以告诉我吗,我的是860171926再问:为什么和你很熟吗再答:跟你对下试卷
证明:连接OD∵AD=CD,AO=BO∴OD是△ABC的中位线∴OD‖BC∵DE⊥BC∴DE⊥OD∴DE是○O的切线
1.连接od∵od=oc=r,oc=1/2ac=1/2ab∴od=1/2ab∵ao=co所以od‖ab因为角dea=90°,所以od⊥efDE是圆O的切线,得证解2:过c做ab平行线交ef与gfc:c
因为同为圆的半径AO=OD,所以有∠OAD=∠ODA,若AB=AC,则有∠OAD=∠DAC,因∠DAC+∠EDA=90°,固有∠OAD+∠EDA=∠ODA+∠EDA=90°.OD为圆的半径,DE与OD
连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC
证明:连接OD.(1)∵DE=BE,∴∠DOE=∠BOE(等弧所对的圆心角相等).∴∠COB=12∠DOB.∵∠DAO=12∠DOB(同弧所对的圆周角是所对的圆心角的一半),∴∠DAO=∠COB(等量
(1)连接AD,∠ADB=90°,则∠ADC=90°,因为BD=CD,AD=AD,据边角边定理,△ADC=△ADB,所以AB=AC;(2)连接OD,则即证DE⊥OD,因为OA=OD,所以∠OAD=∠O