AB是圆O的直,BD为圆O的切线,过点B的弦BC垂直于OD交圆O于点C,垂足为M
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 13:11:53
连接OC交BD于点E,那么OE垂直平分BD,且OE=1/2AD=1,所以EC=3-1=2,又因为AB是圆O的直径所以角ADB=90度,所以BD=根号36-4=4根号2,所以BE=4根号2/2,所以BC
连接OD,∵C是弧BD的中点,∴∠COD=∠COB,∵∠A=∠1/2∠DOB,∴∠A=∠COB,∴OC‖AD
连接CO,与BD交于点G因为AD=2,圆半径为3,即直径AB=6根据勾股定理得BD=4√2即DG=2√2因为C是弧BD的中点所以CO垂直BD因为AB是直径,所以角ADB=90度所以AD//OG因为O是
因为AB是圆O的直径,点D在圆上所以∠ADB=90°又OC⊥AB所以∠EOB=∠ACB=90°又∠ABD=∠EBO所以Rt△EBO∽Rt△ABD则BO:BD=EB:AB(1)在Rt△EBO中,OB=O
证明:在圆O中∵AB为直径CD为弦∵AB⊥CD∴CE=DE∠AED=∠AEC∵AE=AE∴Rt△AED≌Rt△AEC∴∠CAE=∠DAE∴弧BC=弧BD∴BC=BD(相等的弧所对的弦相等)再问:若bc
1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方
(1)三角形OBC全等于三角形ODC(SSS)角CDO=角CBO=90度所CD是圆O的切线(2)由结论(1)知OBCD四点共圆角ABD=角DCO=1/2角BCD所以角BCD=2角ABD(3)OBCD四
证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF连接OC,交BD于点M∵C是弧BD的中点∴OC⊥BD则O
韦达定理:关于x的一元二次方程ax²+bx+c=0的两根x1,x2满足x1+x2=-b/a,x1•x2=c/a设x²-2(m+2)x+2m&su
证明:连接OD∵BD∥CO∴∠B=∠COA∵∠B=1/2∠DOA∴∠DOC=∠COA连接AD所以AD⊥BD∵BD∥CO∴∠OCD=∠BDE(E为CD延长线一点)∠DAB=∠BDE∠DAB+∠B=90°
(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵DC=BD,∴AB=AC.∵∠BAC=60°,由(1)知AB=AC,∴△ABC是等边三角形.在Rt△BAD中,∠BAD=30°,AB=8
1.连接AD,因为AB为直径,所以∠ADB=90(圆周角),所以ADBC,又因为DC=BD,所以ΔABC为等腰三角形,AB=AC.2.连接OD.则OD=OB,所以∠B=∠ODB.因为∠B=∠C,所以∠
证明:AB为直径所以∠ADB=90度因为AB=AC所以三角形BAC为等腰三角形(等腰三角形三线合一性质)所以BD平分∠BAC因为∠BAD=∠CAD所以弧BD=弧DE所以BD=DE
宫E筱沫证明:∵AB是圆O的直径∴∠ACB=90°(直径所对的圆周角等于90度)∵DO⊥AB∴∠BOD=90°∴∠BOD=∠ACB又∵∠DBO=∠ABC∴△BOD∽△ABC∴BD:AB=OB:BC又∵
题目不全啊再问:EF分别是正方形ABCD的边AB和CD的中点,EF,BD相交于点O,,以EF为棱将正方形折成直二面角,求角BOD的度数再问:EF分别是正方形ABCD的边AB和CD的中点,EF,BD相交
总体思路是证明三角形CBA相似于三角形DBC,连接AC,延长CO交圆于E点,连BE,因为角BCD+角BCE=角BCE+角ACE=90度;所以角BCD=角ACE;又由圆的性质知:角ACE=角ABE(同一
三角形BCD为直角三角形,则BC=根号20;COSB=BD/BC=2/根号20;三角形ABC为直角三角形,COSB=BC/AB=根号20/AB=2/根号20;解得AB=10;半径R=AB/2=5AC=
(1)http://hiphotos.baidu.com/watwelve/pic/item/6b39a4231bb0ec59ac34de1d.jpg\x0d\x0d(2)http://hiphoto
(1)连接AD,∠ADB=90°,则∠ADC=90°,因为BD=CD,AD=AD,据边角边定理,△ADC=△ADB,所以AB=AC;(2)连接OD,则即证DE⊥OD,因为OA=OD,所以∠OAD=∠O