AB是⊙O的直径ab=8cbd 30°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:04:16
连接OC,交AD于E.因为C、D是三等分点,所以OC垂直AD,平分AD.所以三角形ACE全等于三角形ODE.阴影部分面积S=扇形OCD的面积圆心角60度,半径4CM,代公式得面积S=8pai/3
1.证明:∵弦CD垂直于直径AB∴AB垂直平分CD【垂径定理】∴BD=BC∴∠BDC=∠BCE∵EC=EB∴∠EBC=∠BCE∴∠EBC=∠BDC∴⊿CEB∽⊿CBD(AA‘)2.∵⊿CEB∽⊿CBD
【1.先证明∠OBC=90°】∵OB=OE∴∠CEB=∠OBE∵∠CBD=∠CEB∴∠OBE=∠CBD∵ED是⊙O的直径∴∠OBE+∠OBD=∠DBE=90°∴∠OBC=∠CBD+∠OBD=90°【2
证明:连接BC,∵AB、CD是⊙O的两条直径,∠AOD=∠BOC,∴弧BC=弧AD.∵CE∥AB,∴弧BC=弧AE.∴弧AD=弧AE.∴AD=AE.
连接OC,OD∵∠CAD=30°∴∠COD=30°∵OC=OD∴△OCD是等边三角形∴CD=1/2AB=3
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
∵AB为直径,CD⊥AB∴PC=PD∵CD=8∴PC=PD=4(3分)设AP=x,则PB=4x由相交弦定理,得x×4x=4×4∴x=2∴AB的长为10.(6分)
连接OD,DF⊥OF,2×OF=OC=OD,所以∠DOF=60°,因为OC⊥AB所以∠DOA=30°,因为△DOB为等腰三角形,∠DOA为外角,等于∠ODB+∠OBD,所以∠DBA=15°,因为∠CB
作N关于AB的对称点N′,连接MN′交AB于点P,则点P即为所求的点,∵M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,∴∠MOB=180°3=60°,∠BON′=180°6=30°,∴∠MO
设AP=x,所以PB=4xAO=(AP+PB)/2=2.5xPO=AO-AP=1.5x因为CD=8所以CP=4AO=CO=2.5x所以CP^2+OP^2=OC^2所以4^2+(1.5x)^2=(2.5
由割线长定理得:PA•PB=PC•PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD为正三角形,∠CBD=12∠COD=30°.
作AE,BF,OP垂直CD于EFPAEFB是梯形,OP是该梯形的中位线,所以OP=1/2(AE+BF)由垂径定理可以得到CP=DP=1/2CD=4cm所以OP=sqrt(5^2-4^2)=3cmAE+
∠CBD的度数为三十度设半径为x,因为DE平行AB,且DE过F,所以DE垂直OC所以OF=FC=二分之一x又在直角三角形ODF中,OF是OD的一半,所以∠ODF为三十度,∠COD为六十度,又同弧所对的
由题知;AB是圆O的直径,弦CD垂直AB于P,连接O与C,若AP:PB=1:4,设AP=m,PB=4m所以OC=OA=OB=(OA+OB)/2=(AB)/2=5m/2PO=OA-AP=5m/2-m=3
如图1所示,连接BC,BD,∵AB是⊙O的直径,∴∠C=∠D=90°,∴sin∠ABC=ACAB=12,∴∠ABC=30°.∵sin∠ABD=ADAB=32,∴∠ABD=60°,∴∠DAC=∠CBD=
应该是∠CAD=∠ABC吧证明:∵AB是圆的直径∴∠C=90°∠B+∠CAB=90°又∠CAD=∠B∴∠CAD+∠CAB=90°∠DAB=90°即OA⊥ADOA是半径∴AD与圆O相切
解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的
连接OC,OD,∴∠COD=2∠CBD=90°,(同弧所对圆心角是圆周角2倍)∴三角形COD为等腰直角三角形.∵直径AB=10cm∴OC=OD=5cm,∴由勾股定理易得CD=5√2cm
连接OC,OD,则∠COD=2∠CBD=90°,所以三角形OCD为等腰直角三角形.∵直径AB=8cm∴OC=OD=4cm,∴CD=42+42=42cm.