AB为直径=2过C作圆O的切线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:53:53
AB为直径=2过C作圆O的切线
如图,圆O直径AB=4,C为圆周上一点,AC=2,过C作圆O切线L,过B作L垂线BD,D为垂点,BD交圆O于E

1.AB=4半径为2,即OA=OC=2又因为AC=2,所以三角形AOC是等边三角形角AOC=60度L为切线所以OC垂直于LBD也垂直于L,所以OC平行BD,角EBA=角AOC=60度OB=OE三角形B

(几何证明选讲选做题)如图所示,圆O的直径AB=6,C为圆周上一点,BC=3.过C作圆的切线l,过A作l的垂线AD,AD

①∵∠ACB是直径AB所对的圆周角,∴∠ACB=90°;∵AB=6,BC=3,∴cos∠ABC=BCAB=12,∵∠ABC是锐角,∴∠ABC=60°.由弦切角定理可得∠ACD=∠ABC=60°,∵在R

(2014•湛江二模)如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆O的切线l,则点A到直线l的距离A

∵圆O的直径AB=6,BC=3∴∠BAC=30°,线段AC=33,又∵直线l为圆O的切线,∴∠DCA=∠B=60°∴AD=92.故答案为:92.

已知AB为⊙O的直径,C为圆上任意一点,过C的切线分别与过A,B的切线交于P,Q.求证AB^2=4AP乘以BQ

连结OP,OQ,易证OPQ为直角三角形,OC垂直于PQ,有性质OC^2=PC*CQ,圆外点到圆上两切线长相等,所以AP=PCBQ=QC且AB=2OC,因此AB^2=4OC^2=4PC*CQ=4AP*B

1的一道习题AB是圆O的直径,PB是圆O的切线,且PB=AB,过点B作PO的垂线,分别交PO、PA于点C、D,若AD=2

延长BD交圆于E,连接AE,因为pb是切线所以pb垂直ab,又因为它们长度相等,所以这是一个等腰直角三角形,角apb=45度.因为ab是直径,所以角e是直角,又因为bc垂直po,po平行于ae,所以三

如图,D为圆O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.CD是圆O的切线,DO为半径,过点B作圆O的切线交C

如果你是初中,你可以这样做说说思路你自己做很明显三角形ABD,CDO,ABE都是直角三角形AD:BD=2/3可证明三角形ADC与三角形CBD相似AD:BD=CD:BC得CD=4设圆的半径为R,则OC=

急!如图 ab是半圆o的直径,C为圆上一点,过C作半圆的切线

①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A

AB为圆o的直径,∠DAB=60°,过点o作弦AD的平行线与过B点的切线交于C,连接CD,求∠ADC的度数

连接OD,则OP=OD=OB,所以∠OAD=∠ODA=∠AOD=∠BOC=60度;所以,三角形ODC与OBC是全等三角形,所以∠ODC=90度.因此,∠ADC=∠OAD+∠ODC=90+60=150度

圆O直径AB=5,C为圆周上一点,BC=4,过C点作圆O的切线l,过A作l的垂线AD,垂足为D,则CD=?

连结AC角ACB为90度ACD+ACO=90ACO=CAOCAO+ABC=90则ACD=ABCADC=ACB=90ACD与ABC相似AC/AB=CD/BC3/5=CD/4CD=12/5

如图,圆O的直径AB=4C为圆周上一点,AC=2过点C作圆O的切线L,过点B作L的垂线BD垂足为D,BD与圆O交于点E

(1)(我把AE、OC的交点定为点F)连接OE,则OE=2△OAC和△OBE为等边三角形(过程就略了哈)∵∠ACO=∠COE=60°∴AC//OE∵AC//OE,AC=OE=2∴四边形AOEC为平行四

如图所示,圆O的直径AB=4,点P是AB延长线上的一点,过点P作圆O的切线,切点为C,连接AC.

额.我没法写出详细过程,电脑打字不方便.连接OC(1)因为pc是圆o的切线,所以角OCP=90度所以三角形OCP为直角三角形(且是三个角分别为30,60,90的)因为OC为圆O半径,OC为角CPA所对

已知四边形ABCD内接于圆O,AB为圆O的直径,过C点作圆O的切线CF,过A点作CF的垂线交CF于于F点,较BC的延长线

已知四边形ABCD内接于圆O,AB为圆O的直径,过C点作圆O的切线CF,过A点作CF的垂线交CF于于F点,较BC的延长线于E点,角ABC+角DAB=135度,DC=√2厘米,求AE的长连接OD、OC、

如图所示,AB为圆O的直径,点P为AB延长线上的一个动点,过点P作圆O的切线,切点为C,连接AC,角CPA……

连接OC∵OA=OC∴∠OAC=∠OCA∴∠COP=∠OAC+∠OCA=2∠OAC∵PC切圆O于C∴∠OCP=90∴∠CPA+∠COP=90∴∠CPA=90-∠COP=90-2∠OAC∵PM平分∠CP

如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,则点A到直线l的距离AD为(  )

∵圆O的直径AB=6,BC=3∴∠BAC=30°,线段AC=33又∵直线l为圆O的切线,∴∠DCA=∠B=60°∴AD=92故选D

如图,AB为圆O的直径,点C在圆O上,过点C作圆O的切线交AB的延长线于点D,已知∠D=30

(1)连接OC,∵CD切⊙O于点C∴∠OCD=90°(1分)∵∠D=30°∴∠COD=60°(2分)∵OA=OC∴∠A=∠ACO=30°;(4分)(2)∵CF⊥直径AB,CF=43∴CE=23(5分)

已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1

(Ⅰ)证明:连接OC,因为OA=OC,所以∠OAC=∠OCA,(2分)因为CD为半圆的切线,所以OC⊥CD,又因为AD⊥CD,所以OC∥AD,所以∠OCA=∠CAD,∠OAC=∠CAD,所以AC平分∠

如图,圆o的直径AB等于6厘米,P是AB延长线上的一点,过P作圆o的切线,切点为c,连接AC,若点P在AB的延长线上运动

∠CMP的大小不变,∠CMP=45°连接OC,交PM于D∵PC是⊙O的切线∴∠OCP=90°∵PM平分∠APC∴∠MPC=1/2∠APC∴∠CDP=90°-1/2∠APC∵∠CMP=∠CDP-∠ACO