ab为圆o的直径,角a=角b=90度,DE与圆O相切于E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:50:07
ab为圆o的直径,角a=角b=90度,DE与圆O相切于E
如图'PA'PB圆O的切线,A'B为切点'AC是圆O的直径'角BAC=25度'求角P的度数

l连接OPOP垂直平分AB交AB于D△OAD∽△OAP∠P=2∠BAC=50°再问:三角形'Oad=oap求解释再答:两个三角形不是全等,是相似。两个都是Rt是三角形且有一个公共角∠AOP或者不用相似

P是圆O外一点,PA切圆O于A,AB是圆O的直径,PB交圆O于C,若PA=2cm,角B=30°,求出图中阴影部分面积.

根据切割鉴定理:PA²=PC*PB(可通过△PAC∽△PBA证明)则PB=PA²/PC=4,BC=PB-PC=4-1=3∵A是切点,则OA⊥PA∴AB²=PB²

CD是圆O的直径,点A在DC的延长线上,AE交圆O于B、E,AB等于圆O的半径,角DOE=78° 求角A的度数

设∠A=x,连结OB则∠AOB=x,∠OBE=2x∴∠BEO=180°-4x∴∠AOE=180°-3x=180°-78°解得x=26°即∠A=26°

如图,A,B,C为圆O上三点,CD为△ABC的高,AE为圆O的直径,求证:角CAD=角BAE

证明:连结CE.∵AD为△ABC的高,∴∠ADC=90°,∴∠CAD+∠ACD=90°,∵AE为圆O的直径,∴∠ACE=∠ACD+∠BCE=90°,∴∠CAD=∠BCE,∵∠BAE=∠BCE,∴∠CA

AB是圆O的直径,CD是弦,若AB=10,CD=8,则A、B两点到CD的距离之和为

连接圆心垂直CD,A到直线距离加B到直线距离之和为圆心到直线距离的两倍(中位线定理),连接圆心和D,则圆心到直线距离平方等于半径平方减去半铉长平方=25-16=9,圆心到直线距离等于3,所以A到CD距

如图,已知CD为圆O的直径,点A为DC延长线上一点,B为圆O上一点,且∠ABC=∠D,求证:(1)AB为圆O的切线

(1)连结OB∵∠OBC=∠OCB,∠BOC=2∠D∴∠OBC+∠BOC/2=90°∴∠OBC+∠D=90°∵∠ABC=∠D∴∠ABC+∠OBC=90°,∴OB⊥AB,AB为圆的切线.(2)∵tanD

如图,CD为圆O的直径,∠EOD=72°,AE交圆O于B,且AB=OC,求∠A的度数.

连接OB,因为AB=OC,圆的半径均相等,所以OB=OC=AB所以,∠A=∠BOC,设为x度.因为∠EOD=72°,所以∠EOC=108°由OB=OE得∠BEO=∠EBO设为y度.所以x+y+108=

AB为半圆O的直径C为把圆上任意一点,过点C做CD⊥AB垂足为D,AD=a DB=b 验证a+b≥2根号ab

额这个不用图也能验证(a-b)平方≥0a方+b方-2ab≥0a方+b方+2ab≥4ab(a+b)方≥4ab所以a+b≥2根号ab用图做的话……可以连接ACBC因为是圆所以角ACB为直角(然后用勾股定理

AC=AB,AB为圆O的直径,问角1和角EDC的数量关系

因为AC=AB,所以角EDC=角B因为AB为圆O的直径,所以∠ADC=90度.所以角1+角B=角1+角EDC=90度

急 如图,AB为圆O的直径,直线AP过点A,且 角PAC=角B.(1)求证PA是圆O的切线.

因为AB是直径,所以其所对圆周角角C为直角,那么角B+角CAB=90度又角PAC=角B,所以角PAC+角CAB=90度,即PA与AB垂直直线PA过圆上一点A,且与该圆直径AB垂直,所以是圆O切线

圆O中,直径AB=a,弦CD=b,则a与b的大小关系是

a≥b圆中直径最大,而弦最多只能与直径重合

AB为非直径的弦,角CAE=角B,求证:EF是圆O的切线

过A做直径AD,连接CD由圆的性质可知:∠ACD=90°所以∠BAD+∠CDA=90°(1)∠CDA与∠B同弧AC所以∠CDA=∠B由于∠CAE=∠B所以∠CDA=∠CAE(2)由(1)(2)得∠BA

如图,AB为圆O的直径,C是圆O上一点,点D在AB的延长线上,且角DCB=角A

(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&

三角形ABC内接于圆O过点A作直线EF AB为直径则我们有角CAE=∠B反过来AB为直径∠CAE=∠B那么EF是圆O的切

EF是圆O的切线证明:∵AB是圆O的直径索要交ACB=90°∴∠B+∠BAC=90°∵∠EAC=∠B∴∠EAC+∠BAC=90°∴∠EAB=90°∴EF是圆O的切线再问:在平面直角坐标系中,圆M与x轴

如图,点C在以AB为直径的圆O上,CD⊥AB,垂足为P,设AP=a,PB=b

(1),设圆心O,AP=a,PB=b,AB=AP+PB=a+b,连接OC,OD,OC=OD=AB/2=(a+b)/2,OP=AO-AP=(a+b)/2-a=(b-a)/2,直角三角形OPC与直角三角形

如图,AB为圆O的直径,BD、PD切圆O于B、C点,P、A、B共线,求证PO×PB=PC×PD

证明:∵BD、PD是圆O的切线∴∠PCO=∠PBD=90º又∵∠OPC=∠DPB【公共角】∴⊿OPC∽⊿DPB(AA’)∴PO/PD=PC/PB∴PO×PB=PC×PD

如图,AB为圆O的直径,CD⊥AB,设角COD=a,则AB/AD*sin²a/2=

根据已知可知∠COD=a,因为∠COD是弧AC所对圆心角,∠B弧AC所对圆周角,所以∠COD=2∠B=a,所以∠B=a/2AB/AD*sin^2*a/2=AB/AD(sina/2)^2...(1)在圆

一直A、B、C、D为圆O上的四点,圆O的直径AB=10,弦CD=8,分别过A、B做直线CD的垂线,垂足为M、N,则AM与

过圆心O作OP⊥CD于P,连接OC∵OP⊥CD∴CP=CD/2=8/2=4∴OC=AB/2=5∴OP=√(OC²-CP²)=√(25-16)=3∵AM⊥CD、BN⊥CD∴AM∥OP