AB为圆O的直径,点E在圆O上,C为弧BE的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:57:30
根据勾股定理算出AB=13;再根据三角形相似定理得出R/(12-3R)=5/13,得出R=15/7.
解:(1)证明:∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,∴CB⊥平面ABEF.∵AF⊂平面ABEF,∴AF⊥CB,又∵AB为圆O的直径,∴AF⊥BF,∴AF⊥平面C
∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;
所以角ABC=90度\x0d因为AB为圆O的直径\x0d所以角APB=角BPC=90度因为OP=OB所以角OPB=角ABP\x0d因为角BPC=90度,CE=BE所以PE=BE所以角BPE=角PBC\
题目条件应该打错,是BE=CE(1)证明:AB是直径,∴∠ACB=90°∠A+∠ABC=90°∵CD⊥AB,∴∠BCD+∠ABC=90°∴∠A=∠BCD又∵∠A和∠E所对都是BC弧,∠A=∠E∴∠BC
矩形的对角线相等:连接OB、OE、OF,那MN=OB,HK=OE,PQ=OF,∵OB=OE=OF,∴MN=HK=PQ.
证明:(1)∵PA⊥面ABC,BC⊂面ABC,∴BC⊥PA,又AB是圆O的直径,∴BC⊥AC所以BC⊥面PAC,又因AF⊂面PAC,所以AF⊥BC,又因AF⊥PC,所以AF⊥面PBC,又因PB⊂面PB
(1)证明:由平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,得CB⊥平面ABEF,而AF⊂平面ABEF,所以AF⊥CB(2分)又因为AB为圆O的直径,所以AF⊥BF,(3分
作OG垂直于DE交于EOG//EC.且EC=2OGOG^2=OD^2-DG^2=8^2-(倍根5)^2=59EC=2OG=2倍根59MC=x,则MB=EC-MC=2倍根59AM*MB=MC*ME12*
已知,EA=EC,可得:∠ACE=∠CAE.CD是AB的垂直平分线,可得:AC=BC,则有:∠BAC=∠ABC.在△ACE和△ABC中,∠ACE=∠CAE=∠BAC=∠ABC,所以,△ACE∽△ABC
连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB
连接OC,则OB=OC∴∠OBC=∠OCB∵∠EAC=∠D=60°∴∠ABC=60°∴∠OBC=∠OCB=∠BOC=60°,∠AOC=120°∴BC=OB=OC∵BC=4∴OB=4∴AB=8∴⌒AC=
楼主你是不是仪中的啊再问:是啊怎么了再答:metoo,我也不会做再问:啊哈啊哈啊哈额。。。。。。。。。。。再答:楼主你QQ可以告诉我吗,我的是860171926再问:为什么和你很熟吗再答:跟你对下试卷
ea是切线,ab是直径,所以角eab,acb都是90度,角abc是30度,bc=4由三角关系半径是4角aoc120度是圆周长的三分之一所以劣弧长为三分之八π
1、∵AB为圆O的直径∴∠ACB=90°∵AD⊥EC∴∠ADC=90°∵CE是圆O的切线∴∠DCF=∠DAC∵F、A、B、C四点共圆∴∠DFC=∠ABC∴Rt△CDF∽Rt△ABC∴∠DCF=∠BAC
连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC
连接OG,OE,OF,根据长方形的对角线相等证明都等于圆的半径,所以都相等
容易推得△AEO相似△ACB又因为BC=5AC=12得AB=13设半径为xAO=AC-CO=12-x由相似得OE/BC=AO/ABx/5=(12-x)/1313x=60-5x18x=60x=10/3即