ab为圆o的直径,pq切圆o与点e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:49:12
ab为圆o的直径,pq切圆o与点e
如图,在△ABC中,∠BCA=90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ与⊙O的位置关系,并说

直线PQ与⊙O的位置关系是:相切.其理由如下:①连接OP、CP.∵BC是直径,∴CP⊥AB,在Rt△APC中,Q为斜边AC的中点;∴PQ=CQ=12AC(直角三角形斜边中线等于斜边一半),∴∠QPC=

如图,AB为圆O的直径,PQ切圆O于T,AC⊥PQ于C,交圆O于D.1.求证:AT平分∠BAC.2.若AD=2,TC=3

做出来啦!(1)∠BAT=∠BTP(弦切角)=90°-∠ATC(直径所对角为90°)=∠TAC故AT平分∠BAC(2)∠BAT=∠TAC∠TCA=∠BTA=90°故⊿TAC∽⊿BAT故AB=AT*AT

ab为圆o的直径,pb切圆o于b,d在圆o上,ad‖po,求证:pd是圆o的切线

证明;连接OD∵OA=OD∴∠OAD=∠ODA∵AD//PO∴∠OAD=∠BOP【同位角】∠ODA=∠DOP【内错角】∴∠BOP=∠DOP又∵OB=OD,OP=Op∴⊿BOP≌⊿DOP(SAS)∴∠P

如图,AB为圆O的直径,PQ切圆O于T,AC⊥PQ于C,交圆O于D,AT平分∠BAC.若AD=2,TC=根号3,求圆O的

可以这样做.连接BD,连接OT角BD于M.因为AB是直径,所以角ADB是90度,而CT是圆的切线,所以OT垂直CT.这样,四边形CTMD的四个角都是90度,是矩形,所以DM=CT=根号3.因为OM垂直

AB为圆O的直径,PQ切圆O于T,AC垂直PQ于C,交AD于D.若AD=2,TC=根号3,求圆O的半径

1)证明:连接OT.OA=OT,则∠OAT=∠OTA; PQ切圆O于T,则OT⊥PQ;又AC⊥PQ,则OT‖AC,∠CAT=∠OTA. ∴∠CAT=∠OAT,即AT平分∠BAC.&

如图,AB是圆O的直径,BC切圆O于点B,AC交圆O与点D.若AD=3,DC=2,则圆O的半径为

设BD=x则2/x=x/3所以x=√6所以直径d=√[3²+(6)²]=15故半径r=√15/2楼上错了^^

AB为圆心O的直径,PQ切圆心O于T,AC⊥PQ于C,交圆心O于D.

(1)证明:连接OT.∵OT=OA∴∠OTA=∠OAT∵PQ切圆O于T∴∠OTC=90°∵∠ACT=90°∴∠OTC+∠ACT=180°∴OT平行于AC,∠OTA=∠TAC∴∠TAC=∠OAT∴AT平

(圆)已知圆O,PQ为圆O切线,AC垂直于PQ于点C,交元O于点D AB为直径.AD=2 TC=根号3 求半径的长

连OD,过O作AD的垂线,垂足交AD于E.AE=AD/2=1OE=TC=√3因为AC、OT分别垂直于TQ在直角三角形AEO中,AO是半径勾股定理:AO=√[(√3)^2+1^2]=2半径的长=2

在三角形中,角BCA=90°,以BC为直径的圆O交AB于点P,Q是AC的中点,判断直线PQ与圆O的关系,并说明理由

连接PC,则三角形APC相似于三角形CPB.又有Q、O为AC、CB的中点,所以QPC和OPB相似.则角QPC和角OPB相等,即角QPO和角CPB相等为直角.所以PQ和圆O相切

如图,在三角形ABC中,角BCA=90度,以BC为直径的圆O交AB于点P.Q是AC的中点,判断直线PQ与圆O的位置关系

连接OQ、PC因为BC是直径,所以角BPC=角APC=90度因为Q是AC中点,所以PQ=CQ因为OC=OP,OQ=OQ,所以三角形OCQ与OPQ全等,所以角OPQ=角OCQ=90度,所以PQ与圆相切

AB为圆O直径

解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,

如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D,求证:AT平分∠BAC,

证明:连接OT∵PQ切⊙O于点T∴OT⊥PQ∵AC⊥PQ∴OT‖AC∴∠OTA=∠CAT∵OA=OT∴∠OTA=∠OAT∴∠OAT=∠CAT即:AT平分∠BAC

聪明的进来看看已知AB是半圆O的直径,AB=16,P点是AB上的一动点(不与A,B重合),PQ垂直AB,垂足为P,交半圆

1.因为圆O2与半圆O,半圆O1及PQ都相切,所以连接O2O1,O2C,O2O.作O2K垂直于AB,垂足为K,所以有三角形O2K0和三角形O2O1K,设半径为Ro2k为Y所以(8-R)^2=R^2+Y

如图,在三角形ABC中,角BCA等于90度,Q是AC的中点,以BC为直径的圆0交AB于点P,判断直线PQ与圆O的位置关系

相切再问:有过程吗再答:这不好说再答:很明显的啊再问:额再问:我也知道再问:但不会证明再答:你几年级再问:初三再答:哦再答:你最后只要证明PQ⊥OP就好了再问:还是不会再答:哎再答:这字太多了再答:你

如图,AB为圆o 的直径,p为半圆弧的中点,过p任作直线pq(pq与线段ab不相交),过a,b分别做pq的垂线,cd为垂

   证明连PA、PB∵AB是直径∴∠APB=90°∴∠APC+∠BPD=90°∵AC⊥CD,BD⊥CD∴∠APC+∠CAP=90°∴∠CAP=∠BPD∵P为半圆弧的中点

1.圆O与圆O'相交于A和B,PQ切圆O与P交圆O’于Q和M,交AB的延长线于N,MN=3,QN=15,求PN的长.

1、PN^2=NA*NB=NQ*NM=3*15所以PN=√452、BD=CD=AB/2=1DE*DF=BD*CD=1又|DF-DE|=AB/2=1DE=(√5±1)/23、由PA^2=PB*PC易得B

AB是圆O的直径,弦PQ交AB于M,且PM=MO,求证弧PQ=3分之1弧BQ

延长PO交圆于点C,由PM=MO得∠P=∠POM,由OP=OQ得∠P=∠Q∠BOC=∠POM=∠P∠QOC=∠P+∠Q=2∠P故∠BOQ=3∠P=3∠POA故3弧AP=弧BQ

如图:△ABC中,AB是圆O直径,AC切圆O于A,BC交圆O于P,Q为AB边中点.求证:PQ切圆O于P.

连接OP,因为AB为直径,所以,∠BPA=90°=∠CPA,因为,Q为中点,所以,PQ=AQ=QC,所以,∠QAP=∠QPA,因为,OA=OP,所以,∠OAP=∠OPA,因为AC为切线,所以,∠OAQ