AB为圆O的直径,C为圆O上一点,AD和过C点的切线互相垂直

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:05:46
AB为圆O的直径,C为圆O上一点,AD和过C点的切线互相垂直
如图,AB为圆O的直径,C,D为圆O上的两点,且OC评分∠ACD,CF⊥DB于F

证明:(1)作OM⊥AC于点M,ON⊥CD于点N∵OC是∠ACD的平分线∴ON=OM∴AC=CD(2)作CG⊥CD,交DB的延长线于点G∵AB是直径∴∠ACB=90°=∠DCG∵∠A=∠D,CA=CD

如图,AB为圆O的直径,C,D为圆O上的两点,且OC平分∠ACD,CF⊥DB于F

证明:(1)作OM⊥AC于点M,ON⊥CD于点N∵OC是∠ACD的平分线∴ON=OM∴AC=CD(2)作CG⊥CD,交DB的延长线于点G∵AB是直径∴∠ACB=90°=∠DCG∵∠A=∠D,CA=CD

(2013•佛山一模)如图,已知圆O的直径AB长度为4,点D为线段AB上一点,且AD=13DB,点C为圆O上一点,且BC

(1)∵AB为圆O的直径,∴AC⊥CB,∵Rt△ABC中,由3AC=BC,∴tan∠ABC=ACBC=33,∠ABC=30°,∵AB=4,3AD=DB,∴DB=3,BC=23,由余弦定理,得△BCD中

如图;AB为圆O的直径,C为圆O上一点,连接AC,BC,E为圆O上一点,且BC=CE,点F在BE上,CF⊥AB于D.1求

题目条件应该打错,是BE=CE(1)证明:AB是直径,∴∠ACB=90°∠A+∠ABC=90°∵CD⊥AB,∴∠BCD+∠ABC=90°∴∠A=∠BCD又∵∠A和∠E所对都是BC弧,∠A=∠E∴∠BC

如图,AB为圆O的直径,C为圆O上一点,AD和过C点的切线垂直,垂足为D

1.连接BC,∵CD是切线∴OC垂直DC∴AD平行于OC∴△DAF∽△OCF∴AF/FC=AD/OC连接BE交OC于G∵AB是直径∴∠AEB=90°,∵AB是直径∴BE平行于DC∴OG垂直BE∴OG=

急!如图 ab是半圆o的直径,C为圆上一点,过C作半圆的切线

①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A

如图,ab为园o的直径,c是圆o上一点,p是圆o外一点,op//bc,角p=角bac

(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△

AB为圆O的一固定直径,它圆O分成上下两个半圆,自上半圆上一点C作弦CD垂直AB,角OCD的平分线交圆O于点P,

作OC的反向延长线交弧APB于点E,∵CD⊥AB∴弧CA=弧CD∵角COA=角BOE∴弧CA=弧BE∴弧AD=弧BE∵CP是角OCD的角平分线∴角DPC=角ECP∴弧DP=弧EP∴弧AD+弧DP=弧B

如图,C为圆O直径AB上的一动点,过点C的直线交圆O

这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid

AB是圆O的直径,C是圆O上的一点,连结AC,过C作直线CD垂直于AB,垂足为D(AD小于DB),点E是线段DB上任意一

证明:如图1,连接BC、BF因为AB是直径所以∠ACB=∠AFB=90°因为CD⊥AB所以∠ADC=∠ADG=90°所以∠ACB=∠ADC,∠AFB=∠ADG又因为∠CAD=∠BAC,∠DAG=∠FB

如图所示,AB是圆O的直径,点C是弧AB的中点,D为圆O上一点,求角ADC的度数

已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9

AB为圆O直径

解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,

已知圆O的半径为6,AB是圆O的一条直径,C是直径AB上的一点,过点C作CD垂直AB,交圆O于点D,若CD等于三倍根号3

①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+

如图AB为圆O的直径C D为圆O上的点 OC垂直于AD CF垂直DB

∵AB是直径∴∠ADB=∠MDF=90°∵CM⊥AD,CF⊥DB(DF)即∠CFD=∠CMD=90°∴四边形CMDF是矩形∴DM=CF∠MCF=90°即CF是圆切线∴根据切割线定理:CF²=

如图,AB为圆O的直径,C是圆O上一点,点D在AB的延长线上,且角DCB=角A

(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&

如图,AB是圆O直径,C为圆O上的一点,AD垂直CD,且AC平分角BAD.求证:CD是圆O的切线.如图,AB是圆O直径,

因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=