AB为圆O的直径,AC为圆O的切线,OC交求证∠1=∠CAD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:37:02
∠∴∵∵直径AB∴AP⊥BE∵AC切圆O于点A∴AB⊥AC∴∠APE=∠BAE=90度∵∠CPE=∠BPF=∠BAF∴∠APC=∠FAC∵∠C=∠C∴△APC∽△FAC∴AP/AF=PC/AC∵AC=
连接oD因为:OA=OC,所以:角OAC=OCA又oA=oD,所以:角oAD=oDA角OAC=oAD,所以:角OCA=oDA即:oD//OC又:DE垂直OC,所以:角EDo=90即DE是圆o的切线.
连接AEEO角EAB加FAE是90EAB等于AEOAEF等于FAEAEB是90AEF加AOE是90
OA=OC=半径,角AOC=60°三角形OAC就是等边三角形AC弦=2
OD‖BC →△AOD∽△ABC →OD/BC=AO/AB=1:2 &nb
连接AD,则AD⊥BC,∵BD=CD,∴AB=AC,∠BAD=∠CAD=1/2∠BAC.°∵∠EBC=20°,∴∠EAD=20°即∠CAD=20°,∴∠BAC=2∠CAD=40°;(2)证明:由(1)
1.【求证ad=dc】连接do,证rt△ado≌rt△cdo2.【求证de是圆o1的切线】∵ao1=do1∴∠dao1=∠ado1∵ao=co∴∠cao==∠aco∴∠ado1=∠aco∴do1//c
解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,
连结AD,则可以证明AD垂直平分线段BC.1、三角形ACD为直角三角形,且角C=70°,则角CAD=20°,所以角A=20°×2=40°;2、AC=AB,正确;3、弧AB与弧BE明显不等;4、A、B、
∵AE平分∠BAC∴由角平分线定理可知AB/AC=BE/EC∵tan∠AEC=2设EC=a,则AC=2a∴有AB/5=2a/a,AB=10∵AC为⊙O切线∴∠ACB=90°在Rt△ABC中由勾股定理可
此题难度不小啊!码字不易,望楼主采纳!
半径=2/2=1△OAD中,AB=√2,OA=OD=1可得AB²=OA²+OD²∴∠AOD=90同理△OAC中,OA=OC=AC=1得∠AOC=60∴∠DAC=90+60
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B
等腰三角形,角B=角C,对顶角相等,角C=角ECD,圆周角角B=角CDE,得,角CDE=角ECD.从而CE=CD.
1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的
(1)连接AD,∠ADB=90°,则∠ADC=90°,因为BD=CD,AD=AD,据边角边定理,△ADC=△ADB,所以AB=AC;(2)连接OD,则即证DE⊥OD,因为OA=OD,所以∠OAD=∠O
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B