AB为圆O的直径,AC为圆O的切线,OC交求证∠1=∠CAD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:37:02
AB为圆O的直径,AC为圆O的切线,OC交求证∠1=∠CAD
如下图,AB为圆O的直径,AC切圆O于点A,且AC=AB,CO交圆O于点P,CO的延长线交圆O于点F,BP的延长线交AC

∠∴∵∵直径AB∴AP⊥BE∵AC切圆O于点A∴AB⊥AC∴∠APE=∠BAE=90度∵∠CPE=∠BPF=∠BAF∴∠APC=∠FAC∵∠C=∠C∴△APC∽△FAC∴AP/AF=PC/AC∵AC=

AB是圆o的直径,以OA为直径的圆o,与圆o的弦AC相交于点D,DE垂直于OC,垂足为E,求证:DE是圆o的切线.

连接oD因为:OA=OC,所以:角OAC=OCA又oA=oD,所以:角oAD=oDA角OAC=oAD,所以:角OCA=oDA即:oD//OC又:DE垂直OC,所以:角EDo=90即DE是圆o的切线.

AB是圆O直径,CA切圆O于A,连接CB交圆O于E,F为AC中点,求证EF是圆的切线

连接AEEO角EAB加FAE是90EAB等于AEOAEF等于FAEAEB是90AEF加AOE是90

已知AB是圆O的直径,弧AC的度数为60°,如果圆O的半径为2cm,那么弦AC的长为?

OA=OC=半径,角AOC=60°三角形OAC就是等边三角形AC弦=2

如图 AB是圆o的直径,AC为弦,OD‖BC,交AC于点D,

OD‖BC  →△AOD∽△ABC  →OD/BC=AO/AB=1:2       &nb

已知:如图,AB为圆O的直径,BD=CD,交圆O于点D,AC交圆O于点E.

连接AD,则AD⊥BC,∵BD=CD,∴AB=AC,∠BAD=∠CAD=1/2∠BAC.°∵∠EBC=20°,∴∠EAD=20°即∠CAD=20°,∴∠BAC=2∠CAD=40°;(2)证明:由(1)

AB为圆O直径,以OA为直径的圆O1与圆O的弦AC交于点D,DE垂直OC

1.【求证ad=dc】连接do,证rt△ado≌rt△cdo2.【求证de是圆o1的切线】∵ao1=do1∴∠dao1=∠ado1∵ao=co∴∠cao==∠aco∴∠ado1=∠aco∴do1//c

AB为圆O直径

解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,

AB为圆O的直径,AC交圆O于E点,BC交圆O于D点,CD=BD,角C=70度

连结AD,则可以证明AD垂直平分线段BC.1、三角形ACD为直角三角形,且角C=70°,则角CAD=20°,所以角A=20°×2=40°;2、AC=AB,正确;3、弧AB与弧BE明显不等;4、A、B、

△ABC中,以BC为直径的圆交AB于点D,AC为圆O的切线

∵AE平分∠BAC∴由角平分线定理可知AB/AC=BE/EC∵tan∠AEC=2设EC=a,则AC=2a∴有AB/5=2a/a,AB=10∵AC为⊙O切线∴∠ACB=90°在Rt△ABC中由勾股定理可

△ABC中,以BC为直径的圆交AB与点D,AC为圆O的切线.

此题难度不小啊!码字不易,望楼主采纳!

在圆O中,已知圆O的直径AB=2,弦AC长为1,弦AD长为根号2,则角DAC的度数为?

半径=2/2=1△OAD中,AB=√2,OA=OD=1可得AB²=OA²+OD²∴∠AOD=90同理△OAC中,OA=OC=AC=1得∠AOC=60∴∠DAC=90+60

已知在三角形ABC中,AB等于AC,圆O为三角形ABC的外接圆,CD为圆O的直径,DM平行于AC

延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B

三角形ABC 为等腰三角形,AC=AB ,AB为圆O 的直径,BC、AC的延长线分别交圆O于E、D,求证:CE =CD.

等腰三角形,角B=角C,对顶角相等,角C=角ECD,圆周角角B=角CDE,得,角CDE=角ECD.从而CE=CD.

如图,AB为圆O的直径,CD为圆O得弦,

1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的

AB是圆O的直径 圆O交BC于点D 且BD=CD DE⊥AC于点E 求证AB=AC DE为圆O的切线 若圆O的半径为5

(1)连接AD,∠ADB=90°,则∠ADC=90°,因为BD=CD,AD=AD,据边角边定理,△ADC=△ADB,所以AB=AC;(2)连接OD,则即证DE⊥OD,因为OA=OD,所以∠OAD=∠O

已知在△ABC中,AB=AC,圆O为△ABC的外接圆,CD为圆O的直径,DM//AC交AB于M.

延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B