AB为同阶矩阵,P为可逆矩阵,B^K=P^(-1)A^KP
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:09:07
考虑线性方程组[(A^T)A+λI]x=0,故有(A^T)Ax=-λx,即x为(A^T)A的对应于负特征值-λ的特征向量.又因为(A^T)A为半正定矩阵,其特征值均非负,所以x=0,所以矩阵(A^T)
∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.
AB的行列式等于A的行列式与B的行列式之积,AB为可逆矩阵,故AB的行列式不等于零,于是A的行列式与B的行列式均不等于零,故A,B都是可逆矩阵.
A,B可逆吗?如果B可逆,我能证明BCB^(-1)是I-BA的逆阵反例:A=(10)(10)B=(0.50.5)(00)则可证明I-AB可逆,而I-BA不可逆
(A,E)=123100234010345001r2-2r1,r3-3r11231000-1-2-2100-2-4-301r1+2r2,r3-2r210-1-3200-1-2-2100001-21r2
这个问题有很多证法,反证法可以说是不太好的选择,因为你不易看到背后隐藏的东西.当然,如果一定要反证法,那么也容易如果E-BA不可逆,那么存在非零向量x使得(E-BA)x=0,左乘A=>(E-AB)(A
经济数学团队帮你解答,有不清楚请追问.请及时评价.
利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.
题目错了
A,B都可逆,那么A和B的加减、数乘、矩阵乘、求逆、转置的结果都是可逆矩阵:(A-B)^-1=(A^-1)-(B^-1)(AB)^-1=B^-1A^-1(AB^-1)^-1=BA^-1
知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2
AB*(AB)^(-1)=EAB^(-1)=B^(-1)A^(-1)AB*(AB)^(-1)=AB*B^(-1)*A^(-1)=A[B*B^(-1)]A^(-1)=E故:B*B^(-1)不等于0B*B
设B=P‘AP那么B‘=(P‘AP)‘=(AP)‘P=P‘A‘P因为A‘=A,所以B‘=P‘AP=B,所以P‘AP也是对称矩阵
AB*B^(-1)*A^(-1)=AEA^(-1)=AA^(-1)=E(E为单位矩阵)从而AB为可逆矩阵,逆矩阵为B^(-1)*A^(-1)
存在可逆矩阵P和Q,使得PAQ=B,这其实就是通过初等变换实现的,P表示行变换,Q表示列列变换.存在可逆矩阵P使P^-1AP=B,这说明A与B相似,但不是随便两个矩阵都相似的
对任一n维非零列向量x,总有x'(A'A)x=(Ax)')(Ax)>=0,且x'x>0所以当a>0时,有x'Bx=ax'x+x'(A'A)x>0故B正定
A=CC^T=>A+iB=C(I+iC^{-1}BC{-T})C^T括号内的矩阵特征值实部都是1,所以非奇异再问:老师,括号内的矩阵特征值实部为什么是1呀~再答:因为C^{-1}BC^{-T}是实对称
因为(E+AB)A=A(E+BA)所以A=(E+AB)^-1A(E+BA)所以(E-B(E+AB)^-1A)(E+BA)=E所以E+BA可逆且(E+BA)^-1=E-B(E+AB)^-1A再问:能不能
由(AB)(B^(-1)A^(-1))=A(B·B(-1))A^(-1)=AEA^(-1)=AA^-1=E这说明(AB)^-1=B^(-1)*A^(-1).
一般情况下,矩阵相乘,交换律是不成立的.就是AB不等于BAA,B为同阶可逆矩阵,就是告诉我们存在:A^(-1),B^(-1),满足:AA^(-1)=EBB^(-1)=E这并不是AB=BA成立的条件