abc dec 均为等边三角形 点m为线段ad的中点 点n为线段be的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:07:28
abc dec 均为等边三角形 点m为线段ad的中点 点n为线段be的中点
已知△ABC为等边三角形,在图a中,点M是线段BC上任意一点

∠BQM=60°.图B中也成立.主要是找到一对全等三角形△ABM和△BCN,就知道∠BNC=∠BMQ,就可以证明△BQM和△BNC相似,就可以推出∠BQM等于60°

已知△ABC为等边三角形,在图a中,点M是线段BC上任意一点,点N是线段CA上任意一点,且

再问:第一问怎么知道的∠ABM=∠BCN?再答:等边三角形的内角啊,都是60度再问:奥~~~~对了,怪不得做不出来呢,原来没仔细看,呵呵谢谢你了。会采纳你的。

如图,已知等边三角形ABC中,点D、E、F分别为AB、AC、BC边的中点,M为直线BC上一动点,△DMN为等边三角形(点

判断:EN与MF相等(或EN=MF),点F在直线NE上,理由如下:连接DE,DF,EF.∵△ABC是等边三角形,∴AB=AC=BC.又∵DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=

d为等边三角形abc外一点,且bd等于CD角bdc等于120,点M N分别在abac上若bn加cn

在AC延长线上取一点E使得CE=BM,连接DE.先证明三角形DBM与三角形DCE全等.因为DB=DC,BM=CE,角DBM=角DCE=90度,所以三角形DBM与三角形DCE全等.那么角MDE等于角BD

请教一道数学题:如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点

分析:(1)可通过全等三角形来证明EN与MF相等,如果连接DE,DF,那么DE就是三角形ABC的中位线,可得出三角形ADE,BDF,DFE,FEC都是等边三角形,那么∠DEF=∠DFM=60°,DE=

如图,△ABC.△ADE均为等边三角形,BD.CE交于点F.

1)证明:∵三角形ABC,ADE为等边三角形,∴∠CAB=∠DAE=60,∴∠CAB+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,∵AB=AC,AD=AE∴△BAD≌△CAE(SAS)∴BD=

在等边三角形ABC中的AC延长线上取一点E,以CE为边做等边三角形CDE,使它与三角形ABC位于直线AE的同一侧,点M为

(1)在三角形ACD和三角形BCE中AC=BC,DC=EC,角ACD=角BCE=120度所以,三角形ACD和三角形BCE全等角ADC=角BECAD=BE,EN=DMEC=DC所以三角形ECN和三角形D

已知△abc中为等边三角形.若点M是BC上的一点,且BM=CN.

(1)△abc中为等边三角形AB=BC,角ABM=角BCN=60°BM=CN所以三角形ABM全等于三角形BCN那么有角BAM=角CBN在三角形ABM中,有角BAM+角ABM+角BMA=180°在三角形

如图,已知三角形ABC为等边三角形,AD=BE=CF,CD.AE.BF分别相交于点M.N.P.求证:三角形MNP为等边三

∵三角形ABC为等边三角形∴AB=BC=CA,∠A=∠B=∠C又,AD=BE=CF∴△ABE≌△BCF≌△CAE∠BAE=∠CBF=∠ACD,∠AEB=∠BFC=∠CDA∴∠AMD=∠BNE=∠AMD

如图,△ABC为等边三角形,点M是射线BC上的任意一点.

∠BQM为定值.理由:如图①∵△ABC是等边三角形,∴∠ABC=∠C=60°,AB=BC∵BM=CN∴△ABM≌△BCN(SAS)∴∠BAM=∠CBN(全等三角形的对应角相等),∴∠BQM=∠BAQ+

三个质量均为m的恒星系统,组成一个边长为a的等边三角形.它们仅受彼此之间的万有引力作用,且正在绕系统的质心O点为圆心、在

先写出任意两个恒星之间的万有引力的表达式,选三个中的一个做研究对象,则其进行圆周运动所需的向心力为其他两个恒星对它的万有引力的合力(指向O点),求出这个合力,然后与圆周运动的表达式联立,就可以解除恒星

如图,B C E三点在一条直线上,△ABC和△DCE均为等边三角形,BD与AC交于M,AE与CD交于点N 连接MN,求证

如图所示:因为正△ABC、正△DEC则:BC=AC,CD=CE,∠ACB=∠DCE=60°因为B.E.C在一条直线即:∠ACD=60°则:∠BCD=∠ACE=120°可得:△BCD≌△ACE(SAS)

如图所示,三个质量均为m的恒星系统,组成一个边长为a的等边三角形.

3个星体间万有引力的方向均沿星体连线方向因为3个星体的连线夹角均为60°所以1个星体受另2个星体的万有引力合力沿向心力方向,大小等于其与其中一个星体的万有引力即F向=F万=Gm/r^2星体到圆心的距离

已知,点O为等边三角形ABC的内心,直线m过点O,过A、B、C三点分别作直线m的垂线,垂足分别为点D、E、F.当直线m与

图2结论:BE+CF=AD证明:连接AO并延长交BC于点G,作GH⊥EF于点H,由图1可得AO=2•OG∵AD∥GH,∴△ADO∽△GHO.∴AD=2•GH连接FG并延长交EB的延长线于点M,△BMG

如图1,已知三角形ABC为等边三角形,点M是线段BC上的任意一点,点N是线段CA上的一点.

(1)∠BQM=60度.证明:BM=CN;BA=CB;∠ABM=∠BCN=60度.则⊿ABM≌ΔBCN(SAS),∠BAM=∠CBN;所以,∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=60度.(

如图,△ABC,△DEC均为等边三角形,点M为线段AD的中点,点N为线段BE的中点,求证:△CNM为等边三角形

AC=BC,CD=CE,∠ACD=∠ACB+∠BCD=60+∠BCD=∠ECD+∠BCD=∠BCE所以,△ACD≌△BCEAD=BEAM=AD/2=BE/2=BN,∠ACM=∠BCN,AC=BC△AC

点C在BD上,△ABC与△CDE均为等边三角形,连接AD,BE设AD与BE交与点M 连接MC

∵∠BCE=∠ACD=120°;BC=AC;EC=DC.∴⊿BCE≌⊿ACD(SAS),∠EBC=∠DAC.∴∠AMB=∠EBD+∠MDB=∠DAC+∠MDB=∠ACB=60度.(2)证明:∵⊿BCE

如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形

1)EN=MF,点F在直线NE上2)EN=MF成立连接DE,DF∵∠EDF=∠MDN=∠BDF=60°∴∠NDF=∠BMD∠EDN=∠MDF又,DE=DF,DN=DM∴△DEN≌△DFMEN=MF3)