平面区域由4条曲线围成,求表达式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:03:53
概率理论的主题,这是最好的大学的咨询团队
先画图,求曲线交点是(1,1),旋转完后,你想象一下做许多垂直于y轴的平行平面去截旋转体,得到的每个平面面积都是可求的,其实就是求平行截面为已知图形的物体体积.作x轴平行线y=y0交原平面图行于两点,
ln(1-x)e^y=1-xx=1-e^y互换变量反函数是y=1-e^xy=x(x-1)(x-2)和x轴交于0,1,2因此只需把函数在[1,2]和[0,1]上分别积分就可以了y=x^3-3x^2+2x
由曲线y=x^2与x+y=2所围成?y=x^2与x+y=2的交点(1,1)(-2,4)S=∫(-2,1)(2-x-x^2)dx=(2x-x^2/2-x^3/3)|(-2,1)=(1-1/2-1/3)-
①|x|≤5-5≤x≤5②|x+2y|≤4-4≤x+2y≤4③-4≤x+2y,x=-5时-4≤-5+2y,1≤2y,y≥1/2x=5时-4≤5+2y,-9≤2y,y≥-9/2∴取y≥1/2④x+2y≤
y=x^2x=±√y∫[0,1]√ydy=2y^(3/2)/3|[0,1]=2/3y=x^2/4x=±2√y∫[0,1]2√ydy=4y^(3/2)/3|[0,1]=4/3S=2*(4/3-2/3)=
因为二抛物线和直线均关于y轴对称,只需考虑y轴右侧的部分,然后将结果加倍.y=1与抛物线在第一象限交于A(1,1),B(2,1).另外,以y为自变量较为简单.被积函数为2(y)^(1/2)-y^(1/
y=x^2y=1x=±1y=x^2/4y=1x=±2面积S=2∫(0,1)2根号y-根号ydy=2∫(0,1)根号ydy=4/3*y^(3/2)|(0,1)=4/3
设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函
二重积分再问:请问能否解释下你的解题思路我不是很会再答:第一个等号:二重积分计算体积;第二个等号:二重积分坐标变换;第三个等号:二重积分化累次积分;第四个等号:。。。
把图形分解,从0到1,可以求出三角形面积为1/2从1到2,由定积分,可以解出为ln2-ln1=ln2所以总面积为1/2+ln2.
先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:
∫∫(√x+y)dxdy=∫dx∫(√x+y)dy=∫(15/2)x²dx=(5/2)x³|=5/2
可以X型或Y型方面计算将二重积分化为普通定积分计算即可若是X型,先计算对y的定积分,后对x若是Y型,先积分对x的定积分,后对y若是Y型的话需要分段,因为积分区间中有两条曲线的交接.
y=4-x^2=0,得x=-2,x=2与x轴所围成的平面图形的面积=∫(-2,2)(4-x^2)dx=(4x-x^3/3)|(-2,2)=(4*2-2^3/3)-(4*(-2)-(-2)^3/3)=1
连通的区域是这样的,从这个区域中任意一点出发到另一点,(能使)走过的路线还能在这个区域里,否则(从这点到另一点走过的路线出了这个区域了)就是不连通.
由曲线xy=1及直线y=x的平方x=2,(加上x轴)所围平面区域的面积S=ʃ(0,1)x²dx+ʃ(1,2)1/xdx =1/3x³|(0,1)+ln
求由曲线xy=1,y=x²及直线x=2所围平面区域的面积.面积S=[1,2]∫(x²-1/x)dx=[(1/3)x³-lnx]∣[1,2]=8/3-ln2-1/3=(7/
区域D的面积为:SD=∫e20dx∫1x0dy=∫e211xdx=lnx|e21=2,所以(X,Y)的联合概率密度为:f(x,y)=12 (x,y)∈D0