A,B是⊙O上的两点,角AOB=120,点C为弧AB的中点,试判断四边形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 09:03:13
连接DO∵A,B是圆O上的点∴AO=BO又∵点D为劣弧AB的中点∴弧AD=弧BD∵AD=BD∠AOD=∠DOB=60度又∵OD是半径∴AO=DO,BO=DO∴△AOD和△DOB是等边三角形∴AO=DO
AB是定值所以要P到AB最远所以做AB平行线和抛物线相切即可x+2y-4=0斜率-1/2小于0所以显然切点在x轴下方y=-2√xy'=-2*1/(2√x)斜率-1/2则y'=-1/2x=4y=-4所以
由“三角形AOB是边长为2√3的正三角形”可设A(Xo,bXo/a),B(Xo,-bXo/a)S△AOB=1/2*2*bXo/a*Xo=1/2*(2√3)^2*sin60°由此解得Xo=3,∴b/a=
可以采用间接求法,知道AB的横坐标,就可以求出AB的纵坐标,分别为2/3和2/5,你自己可以在图纸上画个曲线图.假设A在X轴上的横坐标点为M,B在X轴上的横坐标点为N,你可以得到三角形OAM和直角梯形
|AO|=|BO|时,AB关于x轴对称设A(x1,y1)B(x1,-y1)焦点F(p/2,0)为△AOB的垂心AF⊥OB则kAF*kOB=-1[y1/(x1-p/2)]*(-y1/x1)=-1y1^2
证明:连接OC∵C是弧AB的中点,∠AOB=120°∴∠AOC=60°∴△AOC是等边三角形∴OA=AC同理可得BC=OB∴OA=OB=BC=AC∴四边形OACB是菱形再问:你确定你没有看错图?
1.连接OC,则∠AOC=60°∵OC=OB∴△AOC是等边三角形同理△BOC是等边三角形∴AOBC是菱形.
∵∠AOB=120°,弧AC=弧BC,∴∠COA=∠COB=60°,∵OA=OC=OB,∴ΔOAC与ΔOBC是等边三角形,∴OA=OB=AC=BC,∴四边形OACB是菱形.
解题思路:连OC,由C是弧的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根据菱
解题思路:连OC,由C是弧AB的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根
题目中C是短弧AB的中点证明:因为C是弧AB的中点所以弧AC=弧BC所以AC=BC∠AOC=∠COB(在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦中,有一组量相等,那么它们所对应的其余各组量都
由题意知:A(-1,a),B(2,4a)∴AB2=9+9a2,OA2=1+a2,OB2=4+16a2当∠AOB=90°时,AB2=OA2+OB2,即9+9a2=1+a2+4+16a2,解得a=22(负
C是的中点打漏是C是弧AB的中点,⊿AOC.⊿BOC都是正三角形.OACB是菱形[四边相等]
焦点坐标为(p/2,0),A点坐标(a,√(2pa)),B点坐标为(a,-√(2pa))(a>0)AOB的垂心是抛物线焦点,则[√(2pa)-0]/(a-p/2)=-1/[-√(2pa)-0]/(a-
连接OC,可知角AOC=角BOC=60°所以AO=AC=BO=BD所以四边形OACB是菱形
证明:连OC,如图,∵C是弧AB的中点,∠AOB=l20°∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△OAC和△OBC都是等边三角形,∴AC=OA=OB=BC,∴四边形OACB是菱形.
以AB为底.要使三角形面积最大,则B点到直线AB的距离,也即高最大.从而y在B处的切线应与直线AB平行.f'(x)=3x²-1.直线OA斜率k=3设B(m,n).则3m²-1=3,
AOBC是菱形.证明:连OC∵C是AB^的中点∴∠AOC=∠BOC=1/2×120°=60°∵CO=BO(⊙O的半径),∴△OBC是等腰三角形∴OB=BC同理△OCA是等边三角形∴OA=AC又∵OA=
将A、B两点横坐标代入解析式,得到纵坐标A为(-2,4a)B为(1,a)OA,OB过原点(0,0),OA斜率k1=(4a-0)/(-2-0)=-2aOB斜率k2=(a-0)/(1-0)=a又由OA⊥O
已知抛物线y=2x平方上两点A,B则设A(x1,2x1²),B(x2,2x2²)由题意OA=OBOA⊥OB则x1²+(2x1²)²=x2²+