A,B为n阶矩阵,A不等于0,AB=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:02:32
A,B为n阶矩阵,A不等于0,AB=0
设A,B是数域P上两个n阶矩阵,A^n=B^n=0,但A^(n-1)不等于0,A^(n-1)不等于0.证明A与B相似.

如果可以用Jordan标准型,那么方法很直接.由A,B幂零,A,B都只有0特征值.特征值为0的r阶Jordan块是r次幂零的.A^(n-1)非零,说明A有大于n-1阶的Jordan块,于是A只有一个n

n阶矩阵A行列式为0,存在一个代数余子式子不等于0

行列式为0故r(A)一个代数余子式非0,故所在的n-1行线性无关,r(A)≥n-1.即有r(A)=n-1.再问:不是这样,我刚才知道,是利用k阶子式的知识再答:你是说下面这个结论?方阵A的秩=最大的k

若n阶可逆矩阵a的各行元素之和均为a证明a不等于0

考察矩阵A的行列式,由于的各行元素之和均为a,故将a的行列式的第二至第n列都加到第一列,则第一列都变为a,如果a=0则|A|=0,与矩阵A可逆矛盾,所以a不等于0.

A为n阶方阵,A的行列式为d不等于0,则A的伴随矩阵的逆矩阵等于?

A/d再问:我也算的这么多再问:但答案不是这个再答:那是什么再问:后面还有个-3不知道怎么来的再答:矩阵-3?是不是答案错了再问:不知道,可能是吧,我到时问问老师再答:别忘了告诉我结果^O^再问:Ӧ�

已知:A为n阶实正定对称矩阵,B为n阶反实对称矩阵 证:det(A+B)> 0

A为n阶实正定对称矩阵,==>A=PP^T(存在P可逆)B为n阶反实对称矩阵==》P^{-1}BP^{-1}^T为n阶反实对称矩阵,==》P^{-1}BP^{-1}^T的特征值都是实部为0的复数,==

A与B为n阶正交矩阵,且n为奇数,证明:(A -B)(A+B)=0

最后是证明行列式为0,不是证明矩阵乘积为0.反证法:若A-B和A+B都非奇异,则(A-B)^T(A+B)=A^TA-B^TA+A^TB-B^TB=A^TB-B^TA是非奇异阵,但A^TB-B^TA是奇

设A是n阶矩阵,若Ax=b对任何b都有解,A的行列式不等于0 求证!

由已知,对b取εi=(0,...,1,...,0)^T,i=1,2,...,n方程组Ax=εi有解所以ε1,...,εn可由A的列向量组线性表示所以n

设A,B均为n阶矩阵,r(A)

(D)正确.联立方程组Ax=0Bx=0则系数矩阵的秩r(A;B)

设A为n阶方阵,且|A|不等于0,证明A^T A为正定矩阵

用正定定义与矩阵运算证明,如图.经济数学团队帮你解答.请及时评价.

设A,B为两个n维列向量,(A^T)B不等于0,矩阵C=A(B^T),

AB^T的特征值为B^TA,0,0,...,0且由CA=AB^TA=(B^TA)A知A是C的属于特征值B^TA的特征向量.因为Q是正交矩阵所以B^Tqi=0所以Cqi=AB^Tqi=0所以q1,...

设A、B、C、D、均为n 阶矩阵,切|A|不等于0,AC=CA求证:

|A|不等于0,故A是可逆矩阵[A^(-1)On]*[AB]=[InA^(-1)B][-CA^(-1)In][CD][0nD-CA^(-1)B]两边同取行列式左边=|A^(-1)|*|AB|=|D-C

设A,B为N阶矩阵,A不等于0,且AB=0,则( )A.BA=0 B.(A-B)^2=A^2+B^2 C.B=0 D.|

两个非零矩阵的积有可能是零矩阵,所以C不对,不满足交换律所以A不对.只有当A和B为可交换矩阵是B成立,所以B排除,答案是D

A B均为n阶矩阵,|B|不等于0,A+E的逆矩阵=B+E的转置,证明:A是可逆的.

(B+E)转置=B转置+E转置=B转置+E又(A+E)^(-1)=(B+E)转置所以(B+E)转置(A+E)=(B转置+E)(A+E)=E,B转置A+B转置+A+E=E,(B转置+E)A=-B转置,|

矩阵AB=AC,A不等于0矩阵,如果A是m*n矩阵,且R(A)=n,则为啥能推出B=C?

AB=AC,则A(B-C)=0所以B-C是由Ax=0的解空间中向量构成的矩阵A即便不是零矩阵,只要A的行列式等于0,Ax=0也能有非零解,故B-C可以不等于零而A是m*n矩阵,r(A)=n时,Ax=0

A,B均为n阶矩阵,B B为正交矩阵,则|A|^2=

A、B相似,说明存在可逆的P,A=PBP逆B正交,说明B'=B逆,B'表示转置所以|A|²=|A²|=|AA|=|PB(P逆P)BP逆|=|P||P逆||B||B|=|P|*1/|

设A,B为n阶方阵,已知B的行列式不等于0,A-E可逆且(A-E)的逆矩阵=(B-E)的转置,证明A可逆.急,

如图,由条件可推出A是两个可逆阵的乘积,所以A可逆.经济数学团队帮你解答,请及时评价.

设AB均为n阶方阵,若AB=0,且B不等于零,则必有A为不可逆矩阵,为什么啊

又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆

设A ,B为n阶矩阵,如何证明若A*B=k*En(k不等于0),则B*A=k*En

AB=kE(k不等于0).①|A||B|=|AB|=|kE|≠0A,B可逆①->:B=kA^(-1)∴BA=kA^(-1)A=kE再问:A,B可逆,为什么?①->:B=kA^(-1)可以写明白点吗?再

已知A、B为阶正交矩阵,且|A|不等于|B|,证明A+B不可逆矩阵

由A,B正交,所以有AA'=A'A=E,BB=B'B=E所以|A'(A+B)|=|A'A+A'B|=|E+A'B||B'(A+B)|=|B'A+B'B|=|B'A+E|=|(B'A+E)'|=|A'B

A为n阶方阵,I为n阶单位矩阵,若A^2=A且A不等于I.证明A必为奇异矩阵

用反证法.若A不奇异,那么A²=A可推知A(A-I)=0,即A-I=A^(-1)0=0,得A=i,矛盾!所以A奇异