已知随机变量x服从参数为的指数分布,且X落在区间(1,2内的概率达到最大
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 00:11:14
E(5X-1)=5EX-1=9->EX=λ=2期望的基本性质,和泊松分布的期望公式而已.
依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;
1-(1-p)^3=19/27(1-p)^3=8/27(1-p)=2/3p=1/3P{X>=1}=1-(1-p)^2=5/9
因为随机变量X服从参数为1的指数分布,所以f(x)=e^(-x)(x>0时)而f(x)=0(x
对于X有:DX=1/4EX=1/2所以EX²=DX+(EX)²=3/4对于Y有EY=1/4所以E(2X²+3Y)=2EX²+3EY=9/4注:各个版本教材对指数
参数为1,就是λ为1
E(2X-3)=2EX-3.X服从泊松分布,则EX=3.所以EZ=3.
你是不明白分母的那个k!0!的值在数学上通常是约定为1的,因此代入公式后的答案是P{X=0}=e^-3.
E(Z)=E(3X-2)=3·E(X)-2,因为X服从参数为2的泊松分布,所以E(X)=2,所以E(Z)=3×2-2=4.
解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!
因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-
概率密度f(x)=1/3e^(-x/3),x>00,x≤0分布函数F(x)=∫1/3e^(-x/3)dx=1-e^(-x/3),x>0【从0积分到x】0,x≤0
X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X
由题设,X服从参数为λ的指数分布,知:DX=1λ2,λ>0,于是:P{X>DX}=P{X>1λ}=∫+∞1λλe−λxdx=−e−λx| +∞1λ=1e.
(1).f(x)=3e^(-3x),x>0;f(x)=0,其他.y1时,FY(y)=P(Y
P(1),所以E(X)=1,D(X)=1,又因D(X)=E(X²)-E²(X),所以E(X²)=D(X)+E²(X)=2
P(X=x|X+Y=z)=P(X=x,Y=z-x)/P(X+Y=z)=(1-p)^(x-1)p(1-p)^(z-x-1)p/P(X+Y=z)再问:没有错,但是没有写完啊……P(X+Y=z)=?(考虑卷
P(Y=0)=P(X>1)=e^(-1)P(Y=1)=P(X
因为$X\simP(2)$,所以,$\E{X}=2$,$\Var{X}=2$.所以$\E{X^2}=\Var{X}+\E{X}^2=2+2^2=6$,建议好好看看书上的随机变量数字特征这一章,因为$\
/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)