已知随机变量x服从参数为2的泊松分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:17:52
已知随机变量x服从参数为2的泊松分布
已知离散型随机变量X服从参数为λ的泊松分布 若数学期望E(5X-1)=9 则参数λ=?

E(5X-1)=5EX-1=9->EX=λ=2期望的基本性质,和泊松分布的期望公式而已.

设随机变量X服从参数为3的泊松分布,则X平方数学期望,

依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;

向量与线性方程组1设随机变量服从参数为λ的泊松分布,且已知E[(X-1)(X-2)]=1,求λ.

E[(X-1)(X-2)]=E[X^2-3X+2]=EX^2-3EX+2EX=λDX=λEX^2=DX+(EX)^2=λ+λ^2即λ^2-2λ+2=1得λ=1

随机变量随机变量X服从参数为1的指数分布,求E(X+e的—2X方)

因为随机变量X服从参数为1的指数分布,所以f(x)=e^(-x)(x>0时)而f(x)=0(x

随机变量X服从参数为2的指数分布,随机变量Y服从参数为4的指数分布,求E(2X^2+3Y)=多少?

对于X有:DX=1/4EX=1/2所以EX²=DX+(EX)²=3/4对于Y有EY=1/4所以E(2X²+3Y)=2EX²+3EY=9/4注:各个版本教材对指数

已知离散型随机变量X服从参数为2的泊松分布,Y=12-3X,则D(Y)= .

对于方差,我们有以下的性质:D(aX+b)=a^2D(X)所以:D(Y)=D(-3X+12)=(-3)^2D(X)=9D(X)因为离散型随机变量X服从参数为2的泊松分布而参数为λ的泊松分布的方差为λ所

已知离散型随机变量X服从参数为3的泊松分布,则概率P{X=0}=?

你是不明白分母的那个k!0!的值在数学上通常是约定为1的,因此代入公式后的答案是P{X=0}=e^-3.

已知随机变量X服从参数为2的泊松分布,随机变量Z=3X-2,则E (Z)等于多少,

E(Z)=E(3X-2)=3·E(X)-2,因为X服从参数为2的泊松分布,所以E(X)=2,所以E(Z)=3×2-2=4.

设随机变量x服从参数为(2,P)的二项分布,Y服从参数为(4,P)的二项分布

因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-

设随机变量X服从参数为λ的泊松分布,且已知P{X=1}=P{X=2},求P{X=4}.

P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2λ=λ^2/2λ=2P{X=4}=2^4*e^-2/4!=2e^-2/3

设随机变量X服从参数为λ的泊松分布,且已知P{X=1}=2/e²,则λ=?

λ=2由泊松分布密度函数可知:P{X=1}=e^(-λ)*λ=2/e²,可得λ=2.

设随机变量X服从参数为2的泊松分布,则E(X^2)=?

X~π(2)E(x)=2D(X)=2D(X)=E(X^2)-[E(X)]^22=E(X^2)-4E(X^2)=6

随机变量X服从参数为1的泊松分布,则E(X²)=____

P(1),所以E(X)=1,D(X)=1,又因D(X)=E(X²)-E²(X),所以E(X²)=D(X)+E²(X)=2

已知随机变量x服从参数为2的泊松分布则E(X2)=

因为$X\simP(2)$,所以,$\E{X}=2$,$\Var{X}=2$.所以$\E{X^2}=\Var{X}+\E{X}^2=2+2^2=6$,建议好好看看书上的随机变量数字特征这一章,因为$\

设随机变量X服从参数为2的泊松分布,则E(2X)等于?

参数为2的泊松分布,其期望就等于参数2即,E(X)=2∴ E(2X)=2E(X)=4……【期望的性质E(CX)=CE(X)】再问:

设随机变量X服从参数为(2,p)的二项分布,随机变量Y服从参数为(3,p)的二项分布,若P{X≥1}=59,

/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)