已知随机变量x服从区间[1,3]上的均匀分布,即x属于U[1,3],D(x)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:26:19
已知随机变量x服从区间[1,3]上的均匀分布,即x属于U[1,3],D(x)=
概率论的问题.1、已知随机变量X和Y相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)等于?

好多呀,第一题:E(xy)=int(xy,x=-1..2,y=2..4)/6=再问:??。。呵呵。是挺多。。。。会的拜托了。。。再答:我还要先算算。。。不保证都会……再问:o....哦。。好的。。。再

请问,设随机变量X与Y互相独立,且均服从区间 [0,3] 上的均匀分布,则P(max{X,Y}≤1)=?,感恩

max{X,Y}≤1实际上就等价于X和Y都小于等于1,而随机变量X与Y互相独立,于是P(max{X,Y}≤1)=P(X≤1)*P(Y≤1)而X和Y均服从区间[0,3]上的均匀分布故P(X≤1)=P(Y

已知随机变量X,Y相互独立,N(1,9),Y在区间[0,4]上服从均匀分布,则E(X)=?,D(Y)=?,D(X+3Y)

1,4/3,15,其中运用公式相互独立的随机变量之和D(X+Y)=D(X)+D(Y).对于均匀分布D(x)=(b-a)²/12

已知随机变量X与Y相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=

均匀分布是我们学的重要分布的一种,一些结论性的公式最好记住;这里我给你说一下均匀分布的数值特征,E(X)=(b+a)/2D(X)=(b-a)^2/12对Xa=-1b=3对Ya=2b=4所以E(X)=1

已知随机变量X与Y相互独立,且它们分别在区间【-1,3』和【2,4】上服从均匀分布,则E(XY)=

相互独立的随机变量,有E(XY)=E(X)E(Y)E(X)=1E(Y)=3所求=3

假设随机变量X服从参数为2的指数分布,证明:随机变量Y=1-e^(-2X)在区间(0,1)上服从均匀分布.

事实上,任意随机变量的分布函数(CDF)均服从(0,1)上均匀分布. 补充.Y就是X的累积分布函数,累积分布函数的取值范围只能是(0,1).

大学概率论试题答案:设随机变量X在区间(1,2)上服从均匀分布试求

回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1

1、已知随机变量X服从[2,6]上的均匀分布,则P{3

所以P{3再问:答案是EX吗?再答:嗯啊,第二个题目再问:第一题呢谢谢再答:P{3

已知随机变量x服从二项分布X~B(6,1/3).则P(X>2)等于?要详解

随机变量x服从二项分布X~B(6,1/3)故P(X>2)=1-P(X=0)-P(X=1)-P(X=2)=1-(1-1/3)^6-6*(1-1/3)^5*(1/3)-(6*5/2)*(1-1/3)^4*

设随机变量X服从(0,1)区间上的均匀分布,则随机变量Y=X²的密度函数

用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0

已知随机变量X服从正态分布N(0,1),求E(X^2)、E(X^3)与E(X^4)?

X~N(0,1)则Y=X^2~~卡方分布X^2(1)所以EX^2=1E(X^4)=DY+(EY)^2=2+1=3E(X^3)=0.pdf概率密度函数关于y对称.当然,也是可以像沙发同志那样做.不过有点

设随机变量X服从区间为[1,3]上的均匀分布,且Y=2X+1,求D(Y).

由方差的性质:D(Y)=D(2X+1)=4DX,而均匀分布的方差:DX=(3-1)^2/12=4/12=1/3故:D(Y)=4/3这个题是方差的性质与均匀分布的方差的应用,要熟练掌握.

设随机变量X服从某一区间上的均匀分布,且E(X)=3,D(X)=1/3 ,求X的概率密度函数f(x)

你记住均匀分布期望、方差公式就很快了,均匀分布U(a,b)的期望是(a+b)/2,方差是(b-a)^2/12,(最好记住,做题快)于是a+b=6,(b-a)^2/12=1/3,于是a+b=6,b-a=

设随机变量x在区间[0,4]上服从均匀分布,则p{1<X<3}=?

若连续型随机变量X的概率密度为f(x)=1/b-a,(a≤x≤b);f(x)=0,(其他);则X服从区间[a,b]上的均与分布,其分布函数为F(x)=x-a/b-a,(a≤x≤b);0,(xb);若X

已知随机变量X服从在区间(0,1)上的均匀分布,Y=2X+1,求Y的概率密度函数.

由题,设Y的概率密度为fY(y),分布函数为FY(y),由于X在区间(0,1)上的均匀分布∴Y=2X+1∈(1,3)∴对于任意的y∈(1,3),有FY(y)=P{Y≤y}=P{2X+1≤y}=P{X≤

已知随机变量x服从正态分布n(3,1),且p(2

从正态分布的参数可以知道这个分布的均值是3所以p(2