作业帮 > 数学 > 作业

如图,在△ABC中,已知AB=AC,点D、E、F分别在边BC、CA、AB上,且BD=CE,∠BDF=∠CED,那么∠FD

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 13:24:22
如图,在△ABC中,已知AB=AC,点D、E、F分别在边BC、CA、AB上,且BD=CE,∠BDF=∠CED,那么∠FDE与∠B相等吗?为什么?
如图,在△ABC中,已知AB=AC,点D、E、F分别在边BC、CA、AB上,且BD=CE,∠BDF=∠CED,那么∠FD
∠FDE=∠B,理由为:
证明:∵AB=AC(已知),
∴∠B=∠C(等边对等角),
在△BDF和△CED中,

∠B=∠C
BD=CE
∠BDF=∠CED,
∴△BDF≌△CED(ASA),
∴∠BFD=∠CDE(全等三角形对应角相等),
又∵∠FDC=∠B+∠BFD(外角性质),
∴∠FDE=∠B(等式性质).