已知角ABC和角ADE都是等腰直角三角形,如图摆放使得一个直角边重合
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:19:44
把直线AE、BE、AD逆时针旋转90°,则A旋转到C点,B、E对应点分别为B'、E'.△ABE全等于△CBE',BD=BD'.连接MD',下面证明D、M、D'在一条直线上.因为EB、CD'都垂直于BE
证明:过点C作CF∥ED,与DM的延长线交于点F,连接BF,可证得△MDE≌△MFC,∴DM=FM,DE=FC,∴AD=ED=FC,作AN⊥EC于点N,由已知∠ADE=90°,∠ABC=90°,可证得
BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CA
90°【见图不太一样但大体相似】建议您以后提问问题标题不要直接写题目欢迎追问
请标出字母再问:好了吧?
证明:∵∠ABC=90,M为EC的中点∴BM=EM=EC/2(直角三角形中线特性)∴∠MBE=∠MEB∴∠BME=180-2∠BEM∵∠ADE=90,AD=ED∴∠AED=45,∠EDC=90∴DM=
延长EC到点F,使EF=DE,连接AF则△ADF是等腰直角三角形∴∠BAC=∠DAF=90°∴∠BAD=∠CAF∵AB=AC,AD=AF∴△ABD≌△ACF∴∠ADB=∠F=45°∴∠BDC=45°+
我们不妨取特殊情况看一下,让d点为ac的中点,三角形ade在ac的外侧,作出图形,则四边形abce为正方形,设边长为n,则bd=√2a,dm=a/2bm=√5a/2.似乎看不出三角形bmd有什么特殊的
图呢再问:����
解题思路:(1)据等腰直角三角形的性质,及“直角三角形斜边上的中线等于斜边的一半”可解答此题。(2)先证明△MDE≌△MFC,得出AD=ED=FC,再作AN⊥EC于点N,证出△DBF是等腰直角三角形,
过M作MN⊥BD于N,由M是EC中点,∴MN是直角梯形CBDE的中位线,∴2MN=BC+DE=BD,又N是BD中点,∴MN是BD垂直平分线,∴MB=MD.由MN=(1/2)BD,∴∠BMD=90°(三
(1)证明:∵点M是Rt△BEC的斜边EC的中点,∴BM=1/2EC=MC,∴∠MBC=∠MCB.∴∠BME=2∠BCM.同理可证:DM=1/2EC=MC,∠EMD=2∠MCD.∴∠BMD=2∠BCA
(1)证明:如图,∵△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,∴∠EDC=90°,BA=BC,∴∠BCA=45°,∵点M为EC的中点,∴BM=12EC=MC,DM=12EC=M
(1)△BMD是等腰三角形,理由是:∵∠ABC=∠ADE=90°,∴∠EDC=90°,∵点M是CE的中点,∴BM=12CE,DM=12CE,∴BM=DM,∴△BMD是等腰三角形;(2)BD=2BM,证
(1)连接AM,延长BM交AC于P则AM=CM=EM易证△ADM≌△EDM所以∠EDM=∠ADM又因为∠ADE=∠BDE=90°所以∠BDM=45°因为AM=CM则M在线段AC的垂直平分线上所以BP⊥
利用全等三角形来做(SAS)边:角形ABC和三角形ADE都是等腰三角形(这里有2边)角:顶角角BAC=角DAE(加上旁边的公共角)命题得证.
第一步是因为三角形AEC相似于三角形ABD第二步是因为相似后LAEC=LABD又LBAE=90这两步你能明白不?第三步是因为四边形ebcd是由三角形EBD和三角形BCD组成这一步就可利用上面的垂直了再
为等腰三角形,但不一定是等腰直角三角形.因为M是直角梯形BCED斜边CE的中点,作对称梯形CEFG,得长方形BGFD,延长BM,DM至F和G,可知,BF和DG为长方形的两条对角线,M是中点,所以BM=