已知菱形abcd的边长为2且∠a等于60度将菱形abcd沿对角线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:08:28
感谢楼主这么看得起我来求助我~取CD中点为E,连结PE.过E做EF⊥AD于F,连结PF∵侧面PDC是正三角形∴PE⊥CD又∵侧面PDC是与底面ABCD垂直,侧面PDC∩底面ABCD=CD∴PE⊥底面A
1,由于四边形ABCD是菱形,所以对角线垂直平分AC,所以∠AOD=90°,BO=DO=5cm,AO=CO..由题意,在Rt△AOD中,AD=13cm,OD=5cm,由勾股定理得AO=12cm,所以对
(1)由已知AB=BC=CD=DA=BD=2,得△ABD和△CBD是等边三角形∴∠ADB=∠C=60°∵AE+DE=AD=2,又∵AE+CF=2∴DE=CF在△DEB和△CFB中:DE=CF∠ADB=
设两条对角线长分别为a和a*根号3则有(1/2)*a*(a*根号3)=8根号3所以a=4则对角线长为4和4根号3两对角线的一半与菱形的一边构成一个直角三角形由勾股定理得(边长)^2=2^2+(2根号3
DE+DF=2连接AC、BD因为在菱形ABCD中,角ABD=角EBF=60度,角BAE=角BDF=60度,AB=DB所以角ABD-角EBD=角EBF-角EBD即:角ABE=角DBF所以在三角形ABE和
分析:这个题,其实不算难题吧,只是有一个条件是迷惑人的:"∠EAB=α"实际上这这题与这个无关,真正有用的是"∠CEF=90°"也就是垂直关系如图,看到这样的三角形,剩下的东西勾股定理就能解决了~(注
1、连结BD、AC,交于O,∵四边形ABCD是菱形,∴AB=BC=CD=DA,∵〈ABC=60°,∴ADC是正△,∴AC=DC=a,PC=a,∵PC⊥平面ABCD,CD、BC、CA∈平面ABCD,∴P
(1)设菱形的对角线的交点为O菱形的对角线互相垂直平分,且平分各内角所以:∠BAC=∠CAD=∠BAD/2=120°/2=60°而:AD=CD,所以:△ACD是等边三角形,可知:AC=AD=4cmBD
因为AC‖HG,所以DH/AD=HG/AC,即DH/AD=HG/a,①因为BD‖EH,所以AH/AD=EH/BD即AH/AD=EH/b,②①+②,得,DH/AD+AH/AD=HG/a+EH/b整理:(
(1)连接AC交BD于F,则AC与BD互相垂直平分,连接PF因为PC⊥平面ABCD,所以PC⊥BD,又CF⊥BD,所以BF⊥平面PAC,所以BF⊥PF所以∠BPF就是BP与平面PAC所成的角易知:CF
1.△agd全等△aeb(sas)2.连接cf过点d作do⊥cf∠adc=∠fad=120°∠fdc=120°cd=df∠ocd=∠dfo=30°勾股定理求co则cf可知3,过点a作ah平行ce交fe
要不要过程,答案是二分之九倍根号二
菱形ABCD的边长为6AC垂直于BD,且互相平分、平分一组对角AD平行于BC,AC=6√3,BD=6∠A+∠B=180度∠A=60°所以∠B=120度又,∠ABP=60°所以点p在BD上,由勾股定理得
证明:(Ⅰ)连接AC与BD交于点O,连OP.∵PA=PC,PD=PB,且O是AC和BD的中点,∴PO⊥AC,PO⊥BD∴PO⊥平面ABCD.(Ⅱ)取PA的中点N,连接MN,则MN∥AD,则∠NMC就是
题目不全再问:、已知平行六面体ABCD—A1B1C1D1的底面是边长为a的菱形,O为菱形ABCD的中心,∠BAD=∠BAA1=∠DAA1=600, ,求证:A1O⊥平面ABCD。
过D点作DE⊥AB,垂足为E,∵AD=2cm,sinA=DEAD=22,∴DE=22×2=2cm.∴菱形的面积=DE•AB=2×2=22cm2.故答案为22.
1.△agd全等△aeb(sas)2.连接cf过点d作do⊥cf∠adc=∠fad=120°∠fdc=120°cd=df∠ocd=∠dfo=30°勾股定理求co则cf可知3,过点a作ah平行ce交fe
设对角线AC、BD相交于O,菱形ABCD,AC垂直于BD∠BAD=120°,则∠ADB=(1/2)∠ADC=(1/2)(180°-120°)=30°sin∠ADC=AO/ADAO=ADsin∠ADC=
连接BD和AC并且相交于点O,因为ABCD是菱形,所以BD垂直于ACPB=PD=2倍根号3,所以点P一定在AC上在直角三角形AOD中,角CAD=30,所以OD=3,OA=3倍的根号3在直角三角形OPD