已知等边三角形abc和点ABC如图2P为等边△ABC内一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:50:43
已知等边三角形abc和点ABC如图2P为等边△ABC内一点
如图,已知,△ABC和△ADE均为等边三角形,BD、CE交于点F.

(1)证明:∵△ABC和△ADE均为等边三角形,∴AE=AD、AB=AC,又∵∠EAD=∠BAC=60°,∠EAD+∠DAC=∠BAC+∠DAC,即∠DAB=∠EAC,在△EAC和△DAB中,AE=A

已知,如图,△ABC和△CDE都是等边三角形,

1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC

如图所示,已知三角形abc中,以ab,ac为等边像外作等边三角形abf和等边三角形ace,连接be,cf,交于点d,

如图,即证∠1=∠2∵等边△ABF与等边△ACE中AF=AB,AC=AE,∠FAB=∠EAC=60°∴∠FAB+∠BAC=∠EAC+∠BAC即∠FAC=∠BAE∴△FAC≌△BAE∴FC=BE,△FA

如图一已知三角形abc以abac为边向三角形abc外做等边三角形abd和等边三角形ace

1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);(2)如图2,已知△ABC,

已知;如图,三角形ABC和三角形CDE都是等边三角形且点E在BC上,连接BD,AE,1求证;BD=AE 2若将等边三角形

没有图,我只好按照自己画的位置来证明了证明:(1)∠ACE=∠DCE+∠ACD,∠BCD=∠BCA+∠ACD∵△ABC和△CDE都是等边三角形,∴∠BCA=∠DCE=60°∴∠ACE=∠BCD在△AC

如图,△ABC是边长为10的等边三角形,动点P和动点Q分别从点B和点C同时出发,沿着△ABC逆时针运动,已知动点P的速度

1)2t-t=20∴t=202)①P在BC上,Q在AC上则0<t≤5∴0.5(10-t)×根号3t=8根号3t1=2t2=8(不合舍去)②P在BC上,Q在AB上5<t≤100.5(10-t)×根号3(

已知:如图,在等边三角形ABC和等边三角形ADE中,AD是BC边上的中线,DE交AC于点F.

证明:如图所示∵△ADE是等边三角形∴∠ADE=60°又∵△ABC是等边三角形∴∠BAC=60°又∵AD是△ABC的中线∴∠DAC=30°=∠DAF∴∠AFD=90°∴AC⊥DE∵△ADE是等边三角形

如图已知点bcd在同一条直线上已知点B,C,E在同一条直线上△ABC和△CDE都是等边三角形,

证明∵△ABC与△CDE都是等边三角形∴BC=ACCE=CD∠ACB=∠ECD=60°∠BCE=∠ACD∴△BCE≡△ACD∴BE=ADS△BCE=S△ACD∴点C到BE与AD的距离相等∴PC平分∠B

已知,△ABC △ABE 都是等边三角形,

△AEC≌△ABD∴∠AEO=∠ABO∠ACO=∠ADO∴A、E、B、O四点共圆A、D、C、O四点共圆∠AOE=∠ABE=60°∠AOD=∠ACD=60°∴AO是角EOD的平分线

初二数学题:已知等边三角形ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1,h2,h3

1、在形内:设等边△ABC的边长=a,高=h,连接PA、PB、PC,则△ABC面积=△PAB面积+△PBC面积+△PCA面积,∴½ah=½ah1+½ah2+½a

已知等边三角形ABC和点P,设点P到三角形ABC边的AB AC BC 的距离分别是h1 h2 h3,

(1)当P为△ABC内一点时连接P与各顶点得△PAB,△PAC,△PBC.此3个△的面积和等于△ABC的面积;而△PAB=1/2*a*h1△PAC=1/2*a*h2△PBC=1/2*a*h3△ABC=

已知等边三角形ABC 和点P,设点P到△ABC 三边的AB,AC,BC的距离分别是h1, h2, h3, △ABC的高为

(1)当P为△ABC内一点时连接P与各顶点得△PAB,△PAC,△PBC.此3个△的面积和等于△ABC的面积;而△PAB=1/2*a*h1△PAC=1/2*a*h2△PBC=1/2*a*h3△ABC=

1.已知等边三角形ABC和等边三角形摆放如图1,点E、D分别在边AC、AB上,以AB、AE为边作平行四边形ABFE,连接

救命当然要快点了.慢了就没命了呀.楼主正被狗追咬,跑得四脚不着地?怎么得罪它了?还是因为长得太骨感的缘故?:)

        如图所示,已知△ABC和△CDE均是等边三角形,点B、C、E在同

∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,&n

如图,已知△ABC是等边三角形

解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S

如图,已知等边三角形ABC和等边三角形CDE,P、Q分别为AD、BE的中点.如果将(2)如果将等边三角形CDE绕点C旋转

1、证明:∵等边△ABC∴BC=AC,∠C=60∵等边△CDE∴CE=CD∴AD=AC-CD,BE=BC-CE∵P是AD的中点∴PD=(AC-CD)/2∴CP=CD+PD=(AC+CD)/2同理可得:

如图所示,已知△ABC和△BDE都是等边三角形

其中正确的有(6)个.⊿ABE绕B顺时针旋转60º,到达⊿CBD得到①④⊿ABF绕B顺时针旋转60º,到达⊿CBG得到②⑤.∠FHG+∠FBG=120º+60º

已知等边三角形ABC中,0

先吐槽...不可能是等边三角形吧--sinA=√2/10cosA=7√2/10tanA=1/7tan(A-B)=(tanA-tanB)/(1+tanAtanB)=-2/11(1/7-tanB)/[1+