已知离心率为根号2 2,且过点P(根号2 2,1 2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:08:50
c/a=√2c^2=2a^2a^2+b^2=c^2a^2=b^2设双曲线方程为x^2/a^2-y^2/a^2=1把(3,1)代入9/a^2-1/a^2=1a^2=8b^2=8双曲线方程为x^2/8-y
焦点在x轴上.e=c/a=√2,所以c=√2a设双曲线为:x^2/a^2-y^2/(c^2-a^2)=1x^2-y^2=a^2,把(4,-√10)代人方程得:a^2=6,x^2-y^2=6;(2)把x
两焦点间的距离是:2c=边长×√2椭圆上的点到两焦点的距离和是:2a=边长×2离心率是c/a=√2÷2=二分之跟二
设椭圆方程:x^2/a^2+y^2/b^2=1离心率e=c/a=√5/5∴a=√5倍的c∴a^2=5c^2=c^2+b^2∴b^2=4c^2∴方程为:x^2/5c^2+y^2/4c^2=1代入点P(-
1、e=c/a=√2∴c²=2a²,∴b²=c²-a²=a²,即渐近线:y=±x又∵双曲线过点M(3,-√5),M在y=-x上方,在y=x下
e=√2,过(4,-√10)c/a=√2-推-c^2=2*a^2推a^2=b^2焦点在y轴上:不成立焦点在x轴上:16/a^2-10/b^2=1;a^2=b^2推a^2=b^2=6方程为:x^2/6-
1)x^2-y^2=6;2)m=根号3或-根号3;若点M在以F1F2为直径的圆上,则MF1垂直于MF2,圆方程为:x^2+y^2=6,点M满足该圆的方程,所以点M在圆上,也证明了MF1垂直MF2;3)
由题意(1)离心率e=c/a=√2则c=√2ab^2=c^2-a^2=a^2a=b,双曲线为等轴双曲线设方程x^2-y^2=λ代点M(4,-√10)得λ=4双曲线方程x^2/4-y^2/4=1(2)F
1)设方程为x²/a²-y²/b²=1∵c²/a²=e²=2b²=c²-a²∴b²=2a&
根据题意由于对称轴为x轴和y轴所以双曲线方程必为标准方程由于不知道他的实轴是x轴还是y轴所以可以设双曲线方程为mx²+ny²=1(mn<0)由于过点P,故16m+n=1…①设实轴长
首先直线过定点M(3,m).离心率c/a=√2,则c^2/a^2=2,c^2=2a^2.所以b^2=a^2.又双曲线过点(4,-√10)可以得到双曲线的方程为x^2/6-y^2/6=1.又点M在双曲线
(1)c/a=√2==>c=√2a又c^2=a^2+b^2b^2=a^2再将点(4,-√10)代入双曲线的标准方程,求得a=√6同时,解得b=√6,c=2√3双曲线的标准方程:x^2/6-y^2/6=
(1)设方程:x²/a²+y²/b²=1将点坐标代入27/a²+5/b²=1(1)c/a=2/3令a=3t,c=2t,那么b²=a
(1)、设焦点在X轴,双曲线方程为:x^2/a^2-y^2/b^2=1,c/a=√2,(a^2+b^2)=2a^2,a=b,x^2/a^2-y^2/a^2=1,双曲线经过点(4,-√10),代入方程,
首先,这个双曲线的方程是X^2/6-Y^2/6=1所以c=根号12,a=根号6要证明F1M垂直F2M,实际上就是△F1F2M是直角三角形.也就是右焦半径的平方+左焦半径的平方=2c的平方.r左=│ex
e=c/a=根号2/2a=√2ca=√ba^2=2b^2曲线过点(1,根号2/2)1/a^2+1/2b^2=1a^2=2b^2=1椭圆方程x^2/2+y^2=1直线x-y+m=0与椭圆c交于不同的两点
由题意设椭圆方程x^2/a^2+y^2/b^2=1(a>b>0)e=√3/2c/a=√3/2c^2/a^2=3/4(a^2-b^2)/a^2=3/4a^2=4b^2椭圆方程x^2/(4b^2)+y^2
x∧2+y∧2/9=1再答:¥���Ǹ��
离心率e=c/a=√2,∴a=b设双曲线方程为x²-y²=k代入已知点坐标:k=16-10=6双曲线方程为x²/6-y²/6=1(2)代入x=3求得M点纵坐标|
c/a=根号2∴c²=2a²,即:a²+b²=2a²∴a=b设双曲线方程是:x²/a²-y²/a²=1,代人点