已知矩阵A的三个特征值是4,1,-2,试求a,b,c的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:33:05
已知矩阵A的三个特征值是4,1,-2,试求a,b,c的值
已知A是3阶矩阵,r(A)=1,则x=0是A的几重特征值

因为r(A)=1,所以AX=0的基础解系含3-1=2个向量所以A的属于特征值0的线性无关的特征向量有2个所以0至少是A的2重特征值由于A的全部特征值的和等于A的迹a11+a22+a33所以A的另一个特

已知n价可逆矩阵A的特征值为λ,则矩阵(2A)^(-1)的特征值为?

1/(2λ),基本上特征值和矩阵是满足普通的函数对应关系.

设2是矩阵A的特征值,若|A|=4,证明2也是矩阵A*的特征值

由公式AA*=|A|E可以知道,AA*=4E,2是矩阵A的特征值,设特征向量为a那么Aa=2a所以A*Aa=2A*a代入AA*=4E,得到4a=2A*a即A*a=2a那么显然由特征值的定义可以知道,2

已知3阶矩阵A的特征值为1、2、-3,则它的逆矩阵的特征值是?

|λE-A|=0根为1,2,-3则|A|≠0(因为λ=0不是上面方程的根)设B是A的逆矩阵|λE-A|=0等价于|λAB-A|=0等价于|λB-E|=0(因为A是行列式不等于0)等价于|(1/λ)E-

可逆矩阵A的三个特征值分别为1,2,3,则(2A)^-1的三个特征值等于? 答案是1,1/4,1/6.怎么算的?

A的三个特征值分别为1,2,3,那么2A的特征值为2,4,6,(2A)^-1的特征值为1/2,1/4,1/6再问:你确定吗?可是答案写1,不是1/2再答:确定,答案错了再问:哦,那再问你个问题,A=[

线性代数题 已知是4阶矩阵,A*是A的伴随矩阵,若A*的特征值是,1 -1 2 4则不可逆的矩阵是

A*的特征值是1-124,A*的行列式是-8,所以A的行列式是-2.A*的特征值是1-124,(用到结论:A的特征值就是A的行列式除以A*的特征值),所以A的特征值是-2,2,-1,-1/2.所以A-

设2是矩阵A的特征值,若1A1=4,证明2也是矩阵A*的特征值

2是矩阵A的特征值,则(1/2)是矩阵A^(-1)的特征值.A*=|A|A^(-1)=4A^(-1),则4*(1/2)是矩阵A*的特征值,即2也是矩阵A*的特征值.

3阶实对称矩阵A的三个特征值为2,5,5,A的属于特征值2的特征向量是(1,1,1)

实对称矩阵属于不同特征值的特征向量彼此正交所以A的属于特征值5的特征向量与(1,1,1)正交即满足x1+x2+x3=0解得基础解系:a1=(1,-1,0)',a2=(1,0,-1)'所以A的属于特征值

设三阶矩阵A的三个特征值为-1,3,5,则A-3E的特征值?

知识点:若a是A的特征值,则f(a)是f(A)的特征值.f(x)是多项式因为三阶矩阵A的三个特征值为-1,3,5所以A-3E的特征值为-1-3=-4,3-3=0,5-3=2.再问:做题突然发现这是盲点

线性代数 试题 设矩阵A= 1 -1 1X 4 Y-3 -3 5 已知A有三个线性无关的特征向量,λ=2是A的二重特征值

把λ=2带入|λI-A|,得:[11-1-X-2-Y33-3]这个矩阵的秩为3-2=1,所以都和第一行平行,X=2,Y=-2tr(A)=∑λ=10,所以另一个λ=6对应的特征向量为P1,P2,P3,则

四阶方阵,伴随矩阵A*的特征值是1,2,4,8.求(1/3A)^-1的特征值

题:四阶方阵,伴随矩阵A*的特征值是1,2,4,8.求(1/3A)^-1的特征值对于四阶方阵,伴随矩阵A*=|A|A^(-1),记将其特征值用符号k标记,对应于特征向量d.易见|A*|=1·2·4·8

A是n阶非零矩阵,已知A^2+A=0能否推出-1是A的一个特征值?

哈,这次一分没有!你说的没错,证明有问题.这样证:因为A^2+A=0所以(A+E)A=0故A的列向量都是(A+E)X=0的解向量又因为A非零所以(A+E)X=0有非零解.所以|A+E|=0所以-1是A

已知三阶矩阵 的三个特征值为1,-1,2,则A^2+2A+3E 的特征值为 .

A^2+2A+3E的特征值为1.1²+2+3=62.(-1)²-2+3=1-2+3=23.2²+2×2+3=4+4+3=11即特征值为:6,2,11.再问:E呢?为什么用

已知三阶可逆矩阵的特征值为1,3,4,求B=A+A2的特征值

先告诉你一个定理吧:若x是A的特征值,则f(x)是f(A)的特征值.(其中f(x)是x的多项式,f(A)矩阵A的多项式)那么你的问题答案就显而易见了,f(x)=x+x^2;所以B的特征值为飞f(1)、

已知3阶矩阵A的特征值为1、-1、2,则矩阵A2+2E的特征值为

A2的特征值为1,1,4A2+2E的特征值为3,3,6

已知三阶矩阵A的三个特征值为1,-2,3,则|A|=?A^-1的特征值为?A^T的特征值为?A*的特征值为?

|A|=1*(-2)*3=-6A^-1的特征值为1,-1/2,1/3A^T的特征值与A的特征值相同:1,-2,3A*的特征值为:|A|/λ:-6,3,-2

已知3阶矩阵A的特征值是1、2、3,则|A*A-2A+3E|=?

题目中A*A是A^2吧.设f(x)=x^2-2*x+3则f(1)=2,f(2)=3,f(3)=6.因为A的特征值是1,2,3所以A^2-2A+3E的特征值为2,3,6所以|A^2-2A+3E|=2*3

已知二阶矩阵A有两个特征值1,2,求矩阵A的特征多项式.

二阶矩阵特征多项式有是个二次多项式,已知它的两个根是1和2,所以特征多项式就是(t-1)(t-2)即t^2-3t+2再答:有哪里不清楚继续问吧再答:记得采纳我的答案哦~再问:谢谢啦