已知直线y=-2x 3与直线x-6交于点A,且两直线与x轴的交点分别为B,C
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:06:03
设切点坐标为(x1,y1),过(0,-4)切线方程的斜率为k,则y1=x13+x1-2①,又因为y′=3x2+1,所以k=y′x=x1=3x12+1,则过点(0,-4)与曲线y=x3+x-2相切的直线
把横坐标2代入直线y=2x+1,得y=5则直线l与y=2x+1的交点为(2,5)把纵坐标-7代入直线y=-x+8,得y=-15则直线l与y=-x+8的交点为(-15,-7)设直线l的方程为y=kx+b
用一次函数表示的直线若平行则k的值相等.所以k=2(书上应该写得很详细了吧)
曲线y=x3+x-2求导可得y′=3x2+1设切点为(a,b)则3a2+1=4,解得a=1或a=-1切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x3+x-2相切的直线方程是:
设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1),则由题意可得3n2+6n=-3,∴n=-1,故切点为(-1,1),代入切线方程y=-3x+m可得m=-2,故设所求的直线方程为y=-3
∵直线过原点,则k=y0x0(x0≠0).由点(x0,y0)在曲线C上,则y0=x03-3x02+2x0,∴y0x0=x02-3x0+2.又y′=3x2-6x+2,∴在(x0,y0)处曲线C的切线斜率
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
(1)当切点是(1,0),y'=2x^2-1,切线的斜率=2-1=1,切线方程为:y=x-1(2)当切点不是(1,0),设切点是(t,t^3-t)y'=2x^2-1切线的斜率=2t^2-1而切线的斜率
(Ⅰ)由题意得:f′(x)=3x2+2ax+b,∴f′(−1)=4f(−1)=1,即3−2a+b=4−1+a−b+2=1,解得:a=b=-1;(Ⅱ)由(Ⅰ)知:f(x)=x3-x2-x+2,∵f(x)
曲线y=x3+x-2求导可得y′=3x2+1设切点为(a,b)则3a2+1=4,解得a=1或a=-1切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x3+x-2相切的直线方程是:
设切点为P(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x切线的斜率k=y′|x=a=3a2+6a=-3,得a=-1,代入到y=x3+3x2-5,得b=-3,即P(-1,-3),y+3=
设切点为p(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x,又∵与2x-6y+1=0垂直的直线斜率为-3,∴切线的斜率k=y′=3a2+6a=-3,解得a=-1,代入到y=x3+3x2-
设切点为p(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x,又∵与2x-6y+1=0垂直的直线斜率为-3,∴切线的斜率k=y′=3a2+6a=-3,解得a=-1,代入到y=x3+3x2-
设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1)则由题意可得3n2+6n=-3,∴n=-1,故切点为(-1,1),代入切线方程y=-3x+m可得m=-2,故设所求的直线方程为3x+y+
联立:2x-y+3=0、y=-x,容易求出:x=-1、y=1.∴直线L1与直线y=-x的交点为(-1,1).∵直线L2与L1关于直线y=-x对称,∴(-1,1)在直线L2上.显然,点(0,0)是直线y
平行于直线y=15x+2则切线斜率是15导数就是切线斜率即求y'=3x^2+3=15x^2=4x=2,x=-2x=2,y=8+6=14x=-2,y=-8-6=-14所以切点是(2,14),(-2,-1
1.曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于O、A联立方程组得y=x3y=-2x3+3x解得x=0,x=1则O、A坐标为(0,0)(1,1)直线x=t(0
设直线l2的斜率为:k,直线l1:y=2x+3,的斜率为k1=2;对称轴的斜率为:-1;直线l2与l1关于直线y=-x对称,所以,-1-21+(-1)×2=k-(-1)1+k×(-1);即3=k+11
求导得函数极大值为6-a极小值为-a-26所以a大于6时有一个交点a=6或-26时有两个交点a大于-26小于6时有三个交点a小于-26时有一个交点
括号里是什么.已知(0,1)(1,3)是直线上的点,这两点关于x轴的对称点为(0,-1)(1,-3),所以对称直线为y=-2x-1.