已知直线l1:2x y 2=0与直线l2:ax 4y-2=0垂直

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:55:41
已知直线l1:2x y 2=0与直线l2:ax 4y-2=0垂直
高一直线与圆形急!已知圆A的圆心在直线L1:x+y-3=0上,与直线L2:3x+4y-35=0相切于圆周上的点B,且在直

直线L2与L3之间距离为9(9-R)^2=R^2-3^2R=5设圆方程为(x-a)^2+(y-b)^2=5^2...(1)3x+4y-35=0...(2)a+b=3...(3)由(1)、(2)、(3)

如图,直线l1与l2相交于点P,l1的函数表达式为y=2x+3,点P的横坐标为-1,且l2交y轴于点A(0,-1).求直

设点P坐标为(-1,y),代入y=2x+3得y=1∴点P(-1,1)设直线l2的函数表达式为y=kx+b,把P(-1,1),A(0,-1)分别代入y=kx+b得1=-k+b-1=b∴k=-2b=-1∴

已知直线l1:2x-y+3=0,直线l2与l1关于直线y=0对称,直线l3⊥l2,则l3的斜率为几?

直线l1:2x-y+3=0,直线l2与l1关于直线y=0对称,即关于直线x轴对称,所以直线l2:2x+y+3=0,斜率为:-2,直线l3⊥l2,所以直线l3的斜率为:1/2.选A.

如图,直线l1的解析表达式为y=1/2x+1,且l1与x轴交与点D,直线l2经过定点A,B,直线l1,l2交于点C,在直

p点坐标是(5,-1),首先根据面积相等判断p点在x轴下方,画出三角形adp,已知A\B两点坐标直线L2的方程式可求出:Y=-X+4,.解L1、L2的二元一次方程求出C点坐标(2,2),利用三角形面积

已知圆C:(X-3)^2+(Y-4)^2=4,直线L1过定点A(1.0),若L1与圆C相切,求直线L1的方程

圆心(3,4)到切线距离等于半径r=2斜率不存在时,是x=1,满足圆心到切线距离等于半径斜率存在y-0=k(x-1)kx-y-k=0则|3k-4-k|/√(k²+1)=2平方k²-

直线L1:ax-2y+4=0,直线L2:(a-1)x+y-2=0,已知L1垂直L2,求过L1与L2的交点且倾斜角喂135

因为L1垂直L2,所以它们的斜率的积为-1,直线L1斜率为a/2,直线L2的斜率为1-a,所以a=-1或2当a=-1时,联立两条直线方程,得到交点为(0,2)k=-1直线方程为x+y-2=0当a=2,

已知直线L1与直线L2,y=1/3x+3平行,直线L1直线L1与x轴的焦点A的坐标为(2,0)

平行则x系数相等y=1/3x+b则0=2/3+bb=-2/3所以x=0,y=-2/3所以面积=2×|-2/3|÷2=2/3

已知直线L1:y=2x-1,直线L2与直线L1交于点(-2,a),且与y轴交点的坐标为7

L1过点(-2,a)则a=2*(-2)-1a=-5则可设L2:y=kx+b与y轴交点的纵坐标为7,且过(-2,-5)则b=7-5=-2k+b解得k=6所以y=6x+7L1与x轴的交点为(1/2,0)L

已知直L1:2x+y-2=0和L2:3x+4y+7=0,求直线L1上到L2的距离小于3的点的坐标

设该点坐标(x,y)由L1得y=2-2x由距离公式得|3x+4y+7|/5

已知圆C:(x-3)+(y-4)=4,直线l1过定点A(1,0)(1)若l1与圆相切,求l1的方程(2)若l1与圆相交于

(Ⅰ)①若直线l1的斜率不存在,即直线x=1,符合题意.②若直线l1斜率存在,设直线l1为y=k(x-1),即kx-y-k=0.由题意知,圆心(3,4)到已知直线l1的距离等于半径2,即|3k-4-k

已知直线L1:2x-y+3=0与直线L2关于直线y=﹣x对称,求直线L2的方程

联立:2x-y+3=0、y=-x,容易求出:x=-1、y=1.∴直线L1与直线y=-x的交点为(-1,1).∵直线L2与L1关于直线y=-x对称,∴(-1,1)在直线L2上.显然,点(0,0)是直线y

直线L1:ax-2y 4=0,直线L2:(a-1)x y-2=0,已知L1垂直L2,求过L1与L2的交点且倾斜角喂135

L1:ax-2y+4=0斜率a/2L2:(a-1)x+y-2=0斜率1-aL1垂直L2:a/2*(1-a)=-1a=2,或a=-1(1)a=2时:交点(0,2)(2)a=-1时:交点(0,2)过L1与

已知直线l1:y=2x+3,直线l2与l1关于直线y=-x对称,则直线l2的斜率为 ___ .

设直线l2的斜率为:k,直线l1:y=2x+3,的斜率为k1=2;对称轴的斜率为:-1;直线l2与l1关于直线y=-x对称,所以,-1-21+(-1)×2=k-(-1)1+k×(-1);即3=k+11

已知一束光线从点(-2,3)出发沿直线l:2x+y+1=0射在x轴上再反射到y轴上,再反射得到反射光线l1,求l1所在直

光线从点A(-2,3)出发沿直线l:2x+y+1=0射在x轴上得到B(-1/2,0)反射光线斜率=2(两直线对称)得到反射光线BC:y=2x+1交y轴于C(0,1)再反射得到反射光线l1很显然l1斜率

已知直线l1:2x-3y+1=0和l2:x+4y+5=0,平行于直线l3:2x-y=0的直线分别与直线l1,l2相交于A

直线l3:y=2x,设平行于l3的动态直线方程l4为:y=2x+m,求出l4和l1交点A坐标,联立方程,2x-3y+1=0,2x-y+m=0,x=(1-3m)/4,y=(1-m)/2,A( 

已知点F(1,0)和直线l1:x=-1,直线l2过直线l1上的动点M且与直线l1垂直,线段MF的垂直平分线l与直线l2相

(I)连接PF,∵MF的中垂线l交l2于点P,∴|PF|=|PM|,即点P到点F(1,0)的距离等于点P到直线l1:x=-1的距离,由抛物线的定义可得点P的轨迹C是以F为焦点,以直线l1:x=-1为准

已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,且l1,l2之间的距离为5,求直线l1的方程.

因为l1∥l2,所以m2=8m≠n-1,解得m=4n≠-2或m=-4n≠2当m=4时,直线l1的方程是4x+8y+n=0,l2的方程为4x+8y-2=0.两平行线间的距离为|n+2|16+64=5,解