已知点P是△ABC内一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 07:03:12
已知点P是△ABC内一点
已知△ABC的三个顶点的A,B,C及平面内一点P满足PA+PB+PC=AB(均为向量),则点P与△ABC的关系是

AB=PB-PA,故:PA+PB+PC=PB-PA即:PC=-2PA=2AP,即:PC与AP共线且:|PC|=2|AP|,即P点是AC边的一个三等分点选D

在锐角△ABC内一点P满足PA=PB=PC,则点P是△ABC(  )

∵PA=PB,∴P在AB的垂直平分线上,同理P在AC,BC的垂直平分线上.∴点P是△ABC三边垂直平分线的交点.故选D.

已知⊿ABC的三个顶点A、B、C及平面内一点P,满足PA+PB+PC=0,则P点是⊿ABC的( )

选C,点P是△ABC的重心.理由如下:取AB中点M,连结PM并延长至Q,使得MQ=PM,则:四边形APBQ是平行四边形【对角线互相平分】从而,有:PA+PB=PQ=2PM又PA+PB+PC=0,则:2

如图,已知△abc是正三角形,p为三角形内一点,且PA=3

可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来

已知:P是△ABC内任意一点,试说明AB + AC > BP +PC

延长BP交AC于M,两次应用“三角形两边之和大于第三边”即可得证.再问:能说详细点么再答:AM+AB>BM=BP+PM,PM+MC>PC两式两边分别相加得AM+MC+AB>PB+PC,即AB+AC>P

已知,点p是△ABC内任一点;求证AB+AC>BP+PC

延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC再问:AB+AM+CM+PM>

已知P是△ABC内一点,求证:AP+BP+CP>1/2(AB+BC+CA)

根据两边之和大于第三边,所以AP+BP>ABBP+CP>BCAP+CP>AC加起来就行了~

已知三角形ABC,点P是平面ABC外一点,点o是点p在平面ABC上的射影,且点o在三角形ABC内

一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心

已知P为△ABC所在平面内一点,当PA+PB=PC时,点P位于△ABC的(  )

如图所示,若点P三角形的内部,则PA+PB=PM与PC的方向相反,不符合题意;若点点P三角形的边上时也不符合题意.因此点P位于△ABC的外部.故选:D.

已知△ABC的三个顶点A,B,C及平面内一点P,且向量PA+向量PB+向量PC=向量AB,则点P与△ABC的位置关系是

向量PA+向量PB+向量PC=向量AB向量PA+向量PB+向量PC-向量AB=0向量PA+向量PB+向量PC+向量BA=0向量PA+向量PC+(向量PB+向量BA)=0向量PA+向量PC+向量PA=0

已知等边△ABC的边长a=大根号25+12乘小根号3,点P是△ABC内一点,且PA^2+PB^2=PC^2,试求PA与P

对不起,我余弦定理记不住了,你用那个方法看看,你能用余弦定理先求出PC,然后再用,求出PA或PB.

如图,点P是△ABC内任意一点,试说明PB+PC

证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所

将本命题的证明过程补充完整.已知如图,点P是△ABC内任意一点,连接PB,PC.求证∠BPC>∠A

证明:连接并延长AP,交BC与点D∵∠BPD是△ABP的一个外角【已知】∴∠BPD=∠BAP+∠ABP【外角等于不相邻的两个内角和】∵∠CPD是△ACP的一个外角【已知】∴∠CPD=∠BAP+∠ABP

已知P是三角形ABC内一点,连BP,CP.

作辅助线,延长bp到ac,相交点为rab+ar>brcr+pr>cp然后相加ab+ar+cr+pr>br+cp由于ac=ar+crbr=bp+pr带入上不等式所以ab+ac>bp+cp

已知p是等边△ABC内任意一点,过点P分别向三边做垂线,垂足分别为点D.E.F,试证明PD+PE+PF是不变的值.

证明:由三角形的面积很容易证明.S△ABC=S△PAB+S△PCB+S△PACS△PAB=AB*PD/2S△PCB=BC*PD/2S△PAC=AC*PF/2又:等边三角形AB=BC=CA所以:S△AB

已知O是△ABC内一点,∠AOB=∠BOC=∠COA=120,P是△ABC内任一点,求证:PA+PB+PC≥OA+OB+

旋转变换麦田怪圈平面几何图费马点:已知O是△ABC内一点,∠AOB=∠BOC=∠COA=120°;P是△ABC内任一点,求证:PA+PB+PC≥OA+OB+OC.(O为费马点)【分析】将CC‘,OO’

已知△ABC的3个顶点A,B,C及平面内一点P,若向量pa+pb+pc=ab,则点p 与△ABC的位置关系是?

向量PA+向量PB+向量PC=向量AB向量PA+向量PB+向量PC-向量AB=0向量PA+向量PB+向量PC+向量BA=0向量PA+向量PC+(向量PB+向量BA)=0向量PA+向量PC+向量PA=0

已知点P是正方形ABCD内的一点,连接PA,PB,PC。将△

解题思路:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP\'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积