已知点P在椭圆x^2 16 y^ 7=1上,椭圆的作业焦点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:51:33
椭圆方程:x²/9+y²/4=1a²=9,a=3b²=4,b=2设点P(3cosa,2sina)点P到直线的距离d=|3cosa+4sina+15|/√5利用辅
以原点为圆心,c为半径作圆:x^2+y^2=20因为三角形F1PF2是直角三角形F1F2为直径所以点P在圆上与原方程联立得x^2=0y^2=20满足条件的点仅有两个(短轴两端点)这样的点P有2个
方程两边对x求导得4x+2yy'=0即y'=-2x/y所以P点处k=-2x0/y0又过P(x0,y0)所以y-y0=k(x-x0)整理得2x0x+y0y=1(2)设A(x1,y1),B(x2,y2)则
点P(√5a/5,√2a/2)代入椭圆,得:1/5+a²/2b²=1得:a²/2b²=4/5则:a²/b²=8/5不妨令:a²=8
显然所有椭圆中长轴最短的椭圆应该与直线L相切椭圆的焦点为(-3,0),(3,0),可设其标准方程为x^2/A+y^2/(A-9)=1即(A-9)x^2+Ay^2=A^2-9A,把y=x+9带入:(A-
由题意可得,椭圆与双曲线的焦点相同且F1F2=2由椭圆的定义可知,PF1+PF2=21+a2,由双曲线的定义可知,|PF1−PF2|=21−a2上式两边同时平方相加可得2(PF12+PF22)=8即P
设:P(X,Y)a=6,c=√(36-20)=4,A(-6,0),F(4,0)向量AP=(X+6,Y),向量FP=(X-4,Y)∵PA垂直PF,∴(X+6)(X-4)+Y²=0===>Y
已知椭圆x^2/16+y^2/9=1可得a=4,b=3,c=√7则由余弦定理可得:|F1F2|^2=|PF1|^2+|PF2|^2-2|PF1||PF2|COS∠F1PF2=|PF1|^2+|PF2|
x^2/16-y^2/9=1a^2=16,b^2=9,c^2=16+9=25故有焦点坐标是(-5,0)和(5,0)即有椭圆的a^2=b^2+25设椭圆方程是x^2/a^2+y^2/(a^2-25)=1
4x^2+9y^2=36x^2/9+y^2/4=1设x=3cosa;y=2sinax+y=3cosa+2sina=√13sin(a+θ)所以x+y最大值√13最小值-√13
解由椭圆x²/4+y²=1,设椭圆上的任一点P(2cosa,sina)故/PA/=√(2cosa-0)^2+(sina-2)^2=√(4cos^2a+sin^2a-4sina+4)
x^2/8+y^2/2=12x/8+2yy'/2=0y'=-x/(4y)设P坐标是(m,n),则切线的斜率k=y'=-m/4n故切线方程是y-n=-m/(4n)*(x-m)令X=0,得到y=n+m^2
(1)P是椭圆与以AF为直径的圆的交点(2)先假设M坐标,求出来.在假设一个半径为r,以M为圆心的圆.圆的方程与椭圆联立,消去y,令x的方程deita为零.求出r.即为所求
把Q看成一个定点,则相当于求圆外一定点Q到圆C上一动点P的最大距离,即线段PQ的最大值=|QC|+1,现在相当于一定点C(0,4)到椭圆x²/4+y²=1上一动点Q的最大距离,画个
(2倍根号5/3,-2/3)或(-2倍根号5/3,-2/3)
根据题意a²=4a=2b²=3b=√3c²=a²-b²=1c=12a=4PF1+PF2=4PF1²+2PF1*PF2+PF2²=1
PF1垂直什么?再问:垂直F1F2,抱歉打错了再答:
由于点P在椭圆x216+y29=1上,可设P(4cosθ,3sinθ),则d=|12cosθ−12sinθ−24|5,即d=|122cos(θ+π4)−24|5,所以当cos(θ+π4)=−1时,dm
由于P(x,y)在椭圆(x²/144)+(y²/25)=1上设x=12cosa、y=5sina则x+y=12cosa+5sina=13[(12/13)cosa+(5/13)sina