已知点o在三角形abc内_OB。等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:09:37
已知点o在三角形abc内_OB。等于
已知点O为三角形ABC内一点,且OA+OB+OC=0,求证O为三角形重心.

证明:作图,过B作BE平行OC且BE等于OC,OE连接交BC于FOB+OC=OB+BE=OE因BE平行且等于OC所BOCE为平行四边行所F为OE中点OF=1/2OE因OA+OB+OC=0所OB+OC=

已知O为三角形ABC所在平面内一点,若OA *OB=OB*OC=OC*OA,则点O事三角形ABC的什么心?

OA*OB=OB*OC0=OB*(OA-OC)=OB*CA,OB⊥CA同理OA⊥BCOC⊥ABO是⊿ABC的垂心.请留意,由此可以得到三角形三个高交于一点的一个向量证明方法,楼主不妨试试.(即从OA⊥

已知O为三角形ABC所在平面内一点,若OA+OB+OC=O,则点O事三角形ABC的什么心

取BC中点D,连结并延长OD至E,使DE=OD于是四边形BOCE是平行四边形所以向量OB=向量CE所以向量OB+向量OC=向量CE+向量OC=向量OE而由向量OA+向量OB+向量OC=0得向量OB+向

已知三角形ABC,点P是平面ABC外一点,点o是点p在平面ABC上的射影,且点o在三角形ABC内

一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心

已知:O为三角形ABC内任意一点,

分析:构造出两个三角形,使之包含结论中的4条线段,可利用“三角形两边之和大于第三边”解决问题.延长BO交AC于D,则在△ABD中,AB+AD>OB+OD.在△ODC中,OD+DC>OC.所以AB+AD

已知o为三角形abc内任意一点,求证

1.bo+oc+bc<ab+ac+bc则bo+oc<ab+ac2.oa+ob大于aboa+oc大于acob+oc大于bc则三式加起来就是OA+OB+OC>½(AB+BC+AC)再问:麻烦你,

已知等边三角形ABC是⊙O的内接三角形,点D在⌒BC上,延长CD到E,使DE=DB.求证AD=EC

∵ΔABC是等边三角形,∴∠BAC=∠ABC=60°,AB=BC,∴∠BDC=180°-60°=120°,∴∠BDE=60°,∵DE=DB,∴ΔDBE是等边三角形,∴DB=BE,∠DBE=60°,∴∠

已知O,N,P在三角形ABC所在的平面内,且向量PA*PB=PB*PC=PC*PA,证明点P是三角形ABC的垂心.

因为PA*PB=PB*PC所以PA*PB-PB*PC=0PB*(PA-PC)=0PB*CA=0所以PB与CA垂直同理可证PA垂直于BC,PC垂直于AB所以点P是三角形ABC的垂心.

已知三角形ABC内接于圆O,点D在OC的廴长线上,sinB=1/2,角D=30度

因为sinB=1/2,所以角B=30度,角AOC=60度(圆心角是圆周角的一倍),又,点D在OC的廴长线上,角D=30度所以,在三角形OAD中,角OAD=90度,即:AD是圆O的切线同时圆心角AOC=

已知点o是三角形ABC内一点,求证2分之一(BC+CA+AB)<OA+OB+C

证明:在△OAB中,OA+OB>AB(两边之和大于第三边)同理得OB+OC>BCOA+OC>AC三式相加得2(OA+OB+OC)>AB+BC+ACOA+OB+OC>(AB+AC+BC)/2

已知点0在三角形ABC内(不在三角形的边上),OB=OC,且点O到AB、AC的距离相等.

先用HL证明DBO和ECO全等得到∠DBO=∠ECO因为ob=oc所以∠OBC=∠CBO所以∠ABC=∠ACB所以ab=ac=bf由题意bf在三角形内部所以∠FBC>0∠ABF>0设∠A为a所以∠AF

已知O为三角形ABC所在平面内一点,

在同一平面内满足(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0的条件有两个1、向量OB-向量OC=02、向量OB+向量OC-2向量OA=0条件1、向量OB-向量OC=向量CB=0则C和

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直于bc与f,连接de、

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直bc 连接de df

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行

已知,三角形ABC内接于圆O,AD是圆O直径,点E、F分别在AB、AC的延长线上,EF交圆O于M、N,交AD与点H,H是

(1)根据根与系数的关系,可以得到EH+HF=k+2②,EH•HF=4k>0③,再结合已知EH-HF=2,可求k的值,再把k的值代入方程,解方程可求EH、HF,从而可求EH;(2)连接BD

已知O是三角形ABC内一点,求证.

(1)∵O是△ABC内一点,由∠BOC+∠OBC+∠OVB=180°,①又∠A+∠B+∠C=180°,②①-②得∠BOC=∠A+∠ABO+∠ACO,∴∠BOC>∠A.(2)过O作OM‖AC交AB于M,

已知,如图:过三角形ABC内任一点O分别作DE‖BC,FG‖CA,HI‖AB,设三角形ODG、三角形OFI、三角形OHE

1.因为DE//BCFG//CAHI//AB,所以△ODG相似△OFI相似△OHE相似△ABC,所以S1:S2:S3:S=OD^2:IF^2:OE^2:BC^2=BI^2:IF^2:CF^2:BC^2

已知点O为三角形ABC内一点,试比较角BOC与角A的大小.

角BOC大于角A用连接ao并处长ao利用三角形的外角大于任何一不相邻的内角即可证明