已知点C(1,0),x^2 y^2=9,求P的轨迹方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:54:04
x^2+(y-1)^2=1所以可以设x=sina,y=1+cosa所以2x+y=2sina+1+cosa=√5*sin(a+b)+1其中b满足cosb=2/√5,sinb=1/√5因为-1
是不是x^2+y^2+2x-6y-6=0?(x+1)^2+(y-3)^2=16圆心O(-1,3)则所求圆圆心O'和O关于点(0,4)对称则(0,4)是O'O的中点所以O'横纵坐标分别是2*0-(-1)
1、(x-2)^2+(y-7)^2=8,圆心(2,7),半径为2√2,(m-2)^2+(m+1-7)^2=8,m^2-8m+16=0,m=4,P(4,5),斜率k=(5-3)/(4+2)=1/3,PQ
-t是截距的意思,当相切时就是极限点,-t分别可取到最大值和最小值,那么x-y的最值也就知道了再问:极限点是什么意思,,,,点C(3,2)到直线x-y-t=0的距离是什么意思再答:就是取最值的时候,就
(1)把两个点代入方程得-1-b+c=0-4-2b+c=-5解得b=2,c=3所以抛物线的解析式为y=-x^2+2x+3(2)方法一:若斜率不存在则x=-1,否则直线为y=k(x+1)代入抛物线方程整
:x方+Y方+2x=0即(x+1)+y^2=1,圆心(-1,0),半径=1,圆c与x轴交点(-2,0),(0,0),显然,求过p点的c的切线有两条,其中一条方程为x=-2(斜率不存在),设另一条切线斜
要画下图的1)设A与圆分别切于MN两点连接AMANAC(圆心)CMCN整理下圆的方程得(x+1)^2+y^2=1是一个以(-1,0)为圆心1为半径的圆此圆经过(-2,0)A是(-2,2)所以一条切线是
设点P的坐标为(x1,y1),点Q的坐标为(x2,y2)由已知得X1-y1-1=0,(x1-3)²+(y1-4)²=2,解得P的坐标为(4,3).又√【(x2-4)²+(
x=cosay=sina+1S=2X+Y=2cosa+sina+1==根5sin(A+B)+1Smin=1-根5Smax=1+根5X+Y+M=cosa+sina+1+m>=0m>=-1-(cosa+s
∵圆C:x^2+y^2+4x-12y+24=0∴圆心为(-2,6)半径r=4设l:y-5=k(x-0)∴2=│-2k-1│/√(k²+1)k=4/3l:4x-3y+15=0
1.圆的方程x^2+(y-1)^2=1圆心为(0,1),半径为1的圆;不等式x+y+c≤0==》y≤-x-c是在在直线y=-x-c下方的区域;取直线与圆相切的最上边那条直线;直线斜率为1,所以最上边的
设l2的方程为x+y+m=0,易知l2是圆的切线,直线l1到圆心的距离为|3+4+1|/√2=4√2,距离就是4√2-2,而两条平行线的距离|m-1|/√2=4√2-2,解出m就可以啦~再问:不好意思
y=ax+1(1)x^2+y^2-6x+4y+4=0(2)(1),(2)解得a^2x^2+2ax+1+x^2-6x+4ax+8=0(a^2+1)x^2+(6a-6)x+9=0x1=[(6-6a)-√-
(1)把P(a,a+1)坐标代入x²+y²-4x-14y+45=0……①得a²+(a+1)²-4a-14(a+1)+45=0解之,得a=4则P坐标为(4,5)线
MQ|的最大值是Q到圆心的距离d再加上圆的半径;|MQ|的最小值是Q到圆心的距离d减去圆的半径.x²+y²-4x-14y+45=0(x-2)²+(y-7)²=(
C:(x-2)^+(y-3)^2=4设圆上点Q(2+2cosa,3+2sina)则x+y=2sina+2cosa+5=2倍根号2乘sin(a+b)+5所以,x+y的最大值和最小值分别为5+2倍根号2,
很高兴为你解答,希望对你有所帮助,
能,y1=c,y2=6+c,y3=16+c,soy3>y2>y1其实y=2x^-4x+c=2(x-1)^+c-2对称轴为x=1,soy4
1.因为y=-x+2与x轴,y轴分别交于点A和点B,则A(2,0)B(0,2)所以S△AOB=1/2*2*2=2,因为直线y=kx+b(k≠0)经过点C(1,0),设直线与Y轴交与D(0,D)所以S△