已知正实数x,y满足x 2y=1,则2x分之y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:51:22
已知正实数x,y满足x 2y=1,则2x分之y
已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,则x4+x3y+x2y2+xy3+y4=______

x2y+xy2=xy(x+y)=66,设xy=m,x+y=n,由xy+x+y=17,得到m+n=17,由xy(x+y)=66,得到mn=66,∴m=6,n=11或m=11,n=6(舍去),∴xy=m=

已知正实数x、 y满足:1/x+2/y=1 ⑴求2x+y的最小值;⑵当x>3时,求

因为1/x+2/y=1所以2x+y=(2x+y)(1/x+2/y)=4x/y+y/x+4≥2√(4x/y*y/x)+4=8当且仅当4x/y=y/x时,等号成立解联立方程组4x/y=y/x与1/x+2/

若实数x,y满足xy>0且x2y=2,则xy+x2的最小值是(  )

xy+x2=xy2+xy2+x2≥33x4y24=3当且仅当xy2=x2时成立所以xy+x2的最小值为3故选A.

已知实数x、y满足x+y+xy=9,x2y+xy2=20,求x2+y2的值.

x+y+xy=9x+y=9-xyx^2y+xy^2=20xy(x+y)=20xy(9-xy)=20xy^2-9xy+20=0(xy-4)(xy-5)=0xy=4或xy=5x+y=5或x+y=4x^2+

已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,求x2+y2

由已知:xy+x+y=17,xy(x+y)=66,可知xy和x+y是方程t2-17t+66=0的两个实数根,得:t1=6,t2=11.即xy=6,x+y=11,或xy=11,x+y=6.x2+y2=(

已知正实数x,y满足x2+y2+xy=1,则x+y的最大值是___.

∵x2+y2+xy=1∴(x+y)2=1+xy∵xy≤(x+y)24∴(x+y)2-1≤(x+y)24,整理求得-233≤x+y≤233,∴x+y的最大值是233.故答案为:233.

已知正实数x,y满足xy+2x+y=4,则x+y的最小值为______.

∵正实数x,y满足xy+2x+y=4,∴y=4−2xx+1(0<x<2).∴x+y=x+4−2xx+1=x+6−(2+2x)x+1=(x+1)+6x+1-3≥2(x+1)•6x+1-3=26-3,当且

已知正实数x.y满足xy+2x+y=4则x+y的最小值为

答:正实数x和y:xy+2x+y=4设x+y=k>0,y=k-x代入得:x(k-x)+2x+k-x-4=0-x^2+(k+1)x+k-4=0关于x的方程有判别式=(k+1)^2-4*(-1)*(k-4

已知正实数x,y满足x+2y=4,则1x+1y

由已知1x+1y=(1x+1y)(x+2y)×14=(3+2yx+xy)×14≥(3+2 2yx×xy)×14=3+224.等号当且仅当2yx=xy时等号成立.∴1x+1y的最小值为3+22

已知x,y,z满足(1)已知|x-2|+(y+3)2=0(2)z是最大的负整数化简求值2(x2y+xyz)-3(x2y-

|x-2|+(y+3)²=0都是非负式所以分别都=0所以x-2=0y+3=0所以x=2y=-3又因为z是最大的负整数所以z=-1原式=2(x²y+xyz)-3(x²y-x

已知正实数 x,y满足x+y=1,则1x+2y的最小值等于(  )

由于正实数 x,y满足x+y=1,则1x+2y=x+yx+2x+2yy=3+yx+2xy≥3+22,当且仅当yx= 2xy 时,等号成立,故选D.

已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,求x4+x3y+x2y2+xy3+y4的值.

方程ax^2+bx+c=0,判断这个方程有没有实数根,有几个实数根,就要用ΔΔ=b^2-4ac若Δ<0,则方程没有实数根Δ=0,则方程有两个相等实数根,也即只有一个实数根Δ>0,则方程有两个不相等的实

已知两个正实数x,y,满足x+y=4,求1/x+4/y的最小值

解答如下:1/x+4/y=4/4x+4/y=(x+y)/4x+(x+y)/y=1/4+y/4x+x/y+1≥5/4+1=9/4当且仅当y/4x=x/y,即x=4/3,y=8/3时,取到等号

已知实数x,y满足xy+1=4x+y,若x,y为正实数,则xy的取值范围是?

xy+1=4x+y①∵x>0,y>0根据均值定理∴4x+y≥2√(4x*y)=4√(xy)②①②==>xy+1≥4√(xy)∴(xy)-4√(xy)+1≥0解得√(xy)≥2+√3或0

已知正实数xy满足lnx+lny=0,且k(x+2y)

正实数x,y满足Inx+Iny=0,∴xy=1,y=1/x,k(x+2y)≦x^2+4Y^2恒成立∴k0,则u>=2√2,k

已知正实数x,y,z满足2x(x+1y

∵正实数x,y,z满足2x(x+1y+1z)=yz,∴x2+x(1y+1z)=12yz,∴(x+1y)(x+1z)=x2+x((1y+1z)+1yz=12yz+1yz≥212=2.当且仅当yz=2,取

已知正实数x、y满足x+2y=xy,则2x+y的最小值等于______.

∵正实数x、y满足x+2y=xy,∴1y+2x=1(x>0,y>0),∴2x+y=(2x+y)•1=(2x+y)•(1y+2x)=2xy+2yx+1+4≥22xy•2yx+5=9(当且仅当x=y=3时

已知正实数x,y满足1x+2y=1

∵正实数x,y满足1x+2y=1,∴x+2y=(x+2y)×(1x+2y)=1+4+2yx+2xy≥5+22yx×2xy=5+4=9当且仅当2yx=2xy,即x=y=3时取等号∴x+2y的最小值为9故

已知正实数x,y,z,满足xyz=1.求代数式(x+1)(y+1)(z+1)的最小值

因为xyz=1,所以z=1/(xy),带入到代数式,得:2+(x+1/x)+(y+1/y)+[xy+1/(xy)];在以上3个括号中两个正数积为1,显然他们相等时和最小;所以有x=1/x;y=1/y;

已知正实数xy满足x+y=1,求1/(2x+y) +4/(2x+3y)最小值

x、y∈R且x+y=1,∴1/(2x+y)+4/(2x+3y)=1^2/(2x+y)+2^2/(2x+3y)≥(1+2)^2/[(2x+y)+(2x+3y)]=9/[4(x+y)]=9/4.故(2x+