已知正实数abc满足根号a b-8 根号8-a-b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:32:17
已知正实数abc满足根号a b-8 根号8-a-b
已知a,b,c为不等正实数,切abc=1 证明:根号a+根号b+根号c

1/a+1/b>=2倍根号(1/ab)根号c=根号(1/ab)所以1/a+1/b>=2倍根号c1/b+1/c>=2倍根号a1/c+1/a>=2倍根号b1/a+1/b+1/c>=根号a+根号b+根号c所

已知实数ab满足根号2a+8 +│b-根号3│=0,求a,b的值

a=-4b=根号3绝对值中肯定等于0所以B=根号3.则2a+8=0所以a=-4

函数,对数函数.已知a,b,c都是正实数,且满足log4 (16a+b)=logx根号ab,则使4a+b≥c恒成立的c的

见过一个类似的题目,那个底数x应该是2吧!已知abc都是正数,且满足log4(16a+b)=log2(根号ab)求使4a+b>=c恒成的C的取值范围?【解】因为log4(16a+b)=log2(根号a

已知实数ab满足根号下a-1+根号下b+2=0,求根号下-ab

两个非负数的和为0,那么这两个数的值应分别为0即a-1=0b+2=0∴a=1b=-2∴√(-ab)=√2

已知实数abc满足a=6-b,c^2=ab-9,求abc

c^2=ab-9=(6-b)*b-9>=0b^2-6b+9

已知正实数x y满足x-根号xy-2y=0求 x+3根号xy+2y/2x-2根号下xy-y

答:x>0,y>0x-√(xy)-2y=0(√x-2√y)(√x+√y)=0因为:x>0,y>0所以:√x+√y>0所以:√x-2√y=0所以:√x=2√y所以:x=4y所以:[x+3√(xy)+2y

已知a,b,c,都是正实数,且满足loga(9a+b)=log3(根号ab),则使4a+b>=恒成立的c的取值范围是

楼主你的错误在于两次运用基本不等式,却忽略了取等条件两次中不一致的问题,这样的话a,b要同时满足两组的等式,而加上题目条件的一个等式,三个等式决定两个数的值,自然会矛盾,所以a,b是取不到24这个值的

当a、b为正实数根,且满足根号下a-5的差等于8b-b^2-16,求a/根号下5ab

√(a-5)=8b-b^2-16√(a-5)=-(b-4)^2因为ab为正实数根故-(b-4)^2必是非正整数√(a-5)必是非负整数要想等式成立,只有当它们都是零时故得:b=4,a=5a/√(5ab

已知a,b 都是正实数 ,2分之a+b大于等于 根号ab吗?求证

a>0,b>0平方大于等于0(√a-√b)²≥0a-2√ab+b≥0a+b≥2√ab(a+b)/2≥√a

已知:实数a.b满足条件根号a-1+(ab-2)的平方=0

根号和平方大于等于0,相加等于0,若有一个大于0,则另一个小于0,不成立所以两个都等于0所以a-1=0,ab-2=0a=1,ab=2,b=2/a=2所以1/ab+1/(a+1)(b+1)+……+1/(

已知a,b为实数,且满足a=根号b-3+根号3-b+2,求根号ab乘根号a+b分之ab-1的值

a=根号b-3+根号3-b+2则b-3≥0,3-b≥0则b=3a=2根号ab×根号a+b分之ab-1=根号6×根号(5/5)=根号6

已知a,b,c,d都是正实数,求证:根号ab+根号cd≤2分之a+b+c+d

a,b,c,d都是正实数(√a-√b)^2≥0a-2√ab+√b≥0a+b≥2√ab同理c+d≥2√cd√ab≤1/2(a+b)√cd≤1/2(c+d)√ab+√cd≤1/2(a+b+c+d)

已知a ,b, c三个正实数,求证:(ab+a+b+1)(ab+ac+bc+c²)≥16abc

04175106811,∵ab+a+b+1=(a+1)×(b+1),ab+ac+bc+c^2=(a+c)×(b+c),∴(ab+a+b+1)(ab+ac+bc+c^2)=(a+1)(b+1)(a+c)

已知abc都是正实数,求证:bc/a+ca/b+ab/c=>a+b+c

根据均值不等式,BC/A+CA/B>=2C同理AC/B+AB/C>=2ABC/A+BA/C>=2B所以2(bc/a+ca/b+ab/c)>=2(a+b+c)得证

已知ab是正实数,求证a/根号b>=根号a+根号b

没人做我来做吧首先对等式左边通分a(3/2)+b(3/2)/a^(1/2)b^(1/2)>=根号a+根号b对a(3/2)+b(3/2)因式分解(根号a+根号b)[a+b-根号ab]>=(根号a+根号b

已知a.b是正实数,那么,a+b/2≥根号ab是恒立的

(1)(√a-√b)²≥0==>a+b-2√(ab)≥0==>a+b≥2√(ab)(2)根据(a+b)/2≥√(ab)推测(a+b+c)/3≥³√(abc)(3)AB为直径,a+b

已知正实数ab满足a+b=1,则4a+b分之ab的最大值是多少?

他们都错了,应该是设a=sinx的平方b=cosx的平方则满足a+b=1代入不等式,化简就行了,你应该是高中的学生吧,我只能告诉你思路,因为,有一些关于sinx的平方和cosx的平方的公式,我都忘记的