已知服从P=0.6的0-1分布,求条件分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:03:09
只求x的期望方差干嘛要再给个Y啊,
X和Y都是离散型分布 先看X的概率分布: X01 p0.40.6 再看Y的概率分布: Y012 p0.250.50.25 又因为X与Y相互独立,所以(X,Y)的联合概率分布为: X\Y
已知随机变量X,Y服从同一分布,且X的分布律为P(X=-1)=1/4,P(X=0)=1/2,P(X=0)=1/4.若P{丨X丨=丨Y丨}=0,求(X,Y)联合分布律.答:P(-1,-1)=0,P(-1
P{X=Y}=P{(X=0)∩(Y=0)}+P{(X=1)∩(Y=1)}=0.4*0.4+0.6*0.6=0.52
p(x=0)=0.4=e^(-λ)λ=-ln0.4p(x=1)=-0.4ln0.4p(x=2)=0.4ln²0.4p(x>2)=1-P(x=0)-P(x=1)-P(x=2)=1-0.4(ln
你是不明白分母的那个k!0!的值在数学上通常是约定为1的,因此代入公式后的答案是P{X=0}=e^-3.
期望与方差的计算如图,需要用到级数的求和法.经济数学团队帮你解答,请及时采纳.
F(x)=λ^ke^(-λ)/k!由P{X=0}=1/2得e^(-λ)=1/2λ=ln2则F(x)=(ln2)^k/2(k!)P{X>1}=1-P{X
因为P(XY=0)=1,所以XY始终等于0,所以当X以0.5的概率取1的时候,Y一定等于0;又X与Y服从同一分布,因此当X以余下的0.5概率取0的时候Y一定不等于0(否则Y始终等于0,与X不服从同一分
P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2λ=λ^2/2λ=2P{X=4}=2^4*e^-2/4!=2e^-2/3
显然没有概率密度因为他不是连续型的.只能求分布函数.
λ=2由泊松分布密度函数可知:P{X=1}=e^(-λ)*λ=2/e²,可得λ=2.
X和1/X对应的概率是一样的,都是p*(1-p)^(n-1),那么E(1/X)=∑(1/k)*p*(1-p)^(k-1),其中,k从1到无穷.E(1/X)=p/(1-p)∑[(1-p)^k]/k=p/
已知ξ服从参数p=0.6的0-1分布这句话是说明P{x=0}=0.4,P{X=1}=0.6.再问:好的
可如图写出期望计算式,其中只有一项不为0.经济数学团队帮你解答,请及时采纳.谢谢!
由于随机变量X服从参数为1的泊松分布,所以:E(X)=D(X)=1又因为:DX=EX2-(EX)2,所以:EX2=2,X 服从参数为1的泊松分布,所以:P{X=2}=12e−1,故答案为:1
泊松分布的期望=方差=参数=2E(3X-2)=3EX-2=4实际上是个大题
N(1,4)所以P(-1
P(X=k)=(λ^k/k!)*e^(-λ)E(X)=λP(X=1)=(λ^1/1!)*e^(-λ)=λ*e^(-λ)P(X=2)=(λ^2/2!)*e^(-λ)=0.5λ^2*e^(-λ)λ*e^(