已知服从P=0.6的0-1分布,求条件分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:03:09
已知服从P=0.6的0-1分布,求条件分布
随机变量X服从p=0.6的0-1分布Y-B(2,0.5)且XY相互独立,求二维随机变量(X,Y)的联合概率分布及概率P(

X和Y都是离散型分布  先看X的概率分布:  X01  p0.40.6  再看Y的概率分布:  Y012  p0.250.50.25  又因为X与Y相互独立,所以(X,Y)的联合概率分布为:  X\Y

概率论联合分布律计算已知随机变量X,Y服从同一分布,且X的分布律为P(X=-1)=1/4,P(X=0)=1/2,P(X=

已知随机变量X,Y服从同一分布,且X的分布律为P(X=-1)=1/4,P(X=0)=1/2,P(X=0)=1/4.若P{丨X丨=丨Y丨}=0,求(X,Y)联合分布律.答:P(-1,-1)=0,P(-1

随机变量X,Y相互独立,且都服从参数为0.6的0-1分布,则P{X=Y}的概率

P{X=Y}=P{(X=0)∩(Y=0)}+P{(X=1)∩(Y=1)}=0.4*0.4+0.6*0.6=0.52

x服从泊松分布,p(x=0)=0.4,求p(x>2)!

p(x=0)=0.4=e^(-λ)λ=-ln0.4p(x=1)=-0.4ln0.4p(x=2)=0.4ln²0.4p(x>2)=1-P(x=0)-P(x=1)-P(x=2)=1-0.4(ln

已知离散型随机变量X服从参数为3的泊松分布,则概率P{X=0}=?

你是不明白分母的那个k!0!的值在数学上通常是约定为1的,因此代入公式后的答案是P{X=0}=e^-3.

设随机变量X,Y独立,都服从几何分布P(X=k)=P(Y=k)=p(1-p)^k,k=0,1,……求X的期望和方差

期望与方差的计算如图,需要用到级数的求和法.经济数学团队帮你解答,请及时采纳.

设随机变量X服从参数λ的泊松分布,且P{X=0}=1/2,求P{X>1﹜

F(x)=λ^ke^(-λ)/k!由P{X=0}=1/2得e^(-λ)=1/2λ=ln2则F(x)=(ln2)^k/2(k!)P{X>1}=1-P{X

X与Y服从同一分布 ,X取0概率为0.5 ,X取1的概率为0.5,若已知P(XY=0)=1,求P(X=Y)=多少 是0

因为P(XY=0)=1,所以XY始终等于0,所以当X以0.5的概率取1的时候,Y一定等于0;又X与Y服从同一分布,因此当X以余下的0.5概率取0的时候Y一定不等于0(否则Y始终等于0,与X不服从同一分

设随机变量X服从参数为λ的泊松分布,且已知P{X=1}=P{X=2},求P{X=4}.

P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2λ=λ^2/2λ=2P{X=4}=2^4*e^-2/4!=2e^-2/3

设随机变量X服从参数为λ的泊松分布,且已知P{X=1}=2/e²,则λ=?

λ=2由泊松分布密度函数可知:P{X=1}=e^(-λ)*λ=2/e²,可得λ=2.

设随机变量X服从参数为p的几何分布,试证明:E(1/X)=(-plnp)/(1-p)

X和1/X对应的概率是一样的,都是p*(1-p)^(n-1),那么E(1/X)=∑(1/k)*p*(1-p)^(k-1),其中,k从1到无穷.E(1/X)=p/(1-p)∑[(1-p)^k]/k=p/

已知ξ服从参数p=0.6的0-1分布

已知ξ服从参数p=0.6的0-1分布这句话是说明P{x=0}=0.4,P{X=1}=0.6.再问:好的

已知随机变量X与Y均服从0-1分布B(1,3/4),如果E(XY)=5/8,则P{X+Y

可如图写出期望计算式,其中只有一项不为0.经济数学团队帮你解答,请及时采纳.谢谢!

设随机变量X服从参数为1的泊松分布,则P{X=EX2}=______.

由于随机变量X服从参数为1的泊松分布,所以:E(X)=D(X)=1又因为:DX=EX2-(EX)2,所以:EX2=2,X 服从参数为1的泊松分布,所以:P{X=2}=12e−1,故答案为:1

设随机变量X服从参数为λ的泊松分布,即X~P(λ),已知P(X=1)=P(X=2),则X的期望E(X)为多少

P(X=k)=(λ^k/k!)*e^(-λ)E(X)=λP(X=1)=(λ^1/1!)*e^(-λ)=λ*e^(-λ)P(X=2)=(λ^2/2!)*e^(-λ)=0.5λ^2*e^(-λ)λ*e^(