已知曲线在任一点处切线斜率等于改点横坐标导数,且过点(e²,3)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:50:55
已知曲线在任一点处切线斜率等于改点横坐标导数,且过点(e²,3)
1.有一条曲线过点(π/6,0),且在任一点的切线斜率为cosx,求该曲线的方程

1切线斜率k=y'=cosxy=-sinx+C,过(π/6,1)C=3/2y=-sinx+3/22y=e^x切线斜率k=y'=e^x法线斜率k'=-1/k=-e^(-x)(1,e)切线方程k=ey-e

已知曲线过点(2,1),且曲线上任一点(x,y)处 的切线斜率等于-1-y/x,求此曲线方程

是(-1-y)/x吗?在任一点(x,y)的切线斜率就是在该点的导数值,dy/dx=-(1+y)/x,解该微分方程,dy/(1+y)=-dx/x,两边积分,∫d(1+y)/(1+y)=-∫dx/xln(

一曲线经过(0,5) 且其上任一点(x,y) 处的切线斜率等于sinx,求曲线

曲线其上任一点(x,y)处的切线斜率等于sinx∴f'(x)=sinx∴f(x)=-cosx+C∵曲线过(0,5)∴-cos0+C=5即C=6∴曲线方程是y=-cosx+6

已知曲线上任一点P(x,y)处的切线斜率等于2x y,且该曲线通过原点,求此曲线方程.

斜率是2x+y?由y'=2x+y,即y'-y=2x,对应的线性齐次方程y'-y=0的通y=Ce^x用常数变易法,得到C(x)=(-2x-2)e^(-x)+C所以原方程通y=Ce^x-2x-2由y(0)

一曲线通过点(e^2,3),且在任一点处的切线斜率等于该点横坐标的倒数,求该曲线的方

设曲线为y=f(x),f(x)'=1/xf(x)=∫f(x)'x=lnx+c(x>0)或者f(x)=-ln(-x)+c'(x0(x=0)处是个断点,所以该曲线方程为:f(x)=lnx+1(x>0)

曲线y=2x^3上一点A(1,2)则A处的切线斜率等于

6求导数y'=6x^2,代入得切线斜率为6

已知曲线在任一点处的切线斜率等于这个点的纵坐标,且曲线通过点(0,1),求该曲线的方程.

即y'=ydy/dx=ydy/y=dx积分ln|y|=x²/2+lnC所以|y|=c*e^(x²/2)代入点c=1所以y=e^(x²/2),x≥0y=-e^(x²

一曲线过点(1,2),且在任一点处的切线的斜率等于该点横坐标的倒数,求该曲线的方程

就是f(x)=lnx+2啊,为什么是f(x)=ln/x/+2呢?而且两个答案也没有任何区别.

若曲线通过点(e^2,3)且在任一点出的切线斜率等于该店横坐标的倒数,求改曲线的方程

设曲线为y=f(x)因为在任一点出的切线斜率等于该店横坐标的倒数,即y'=f'(x)=1/x所以:y=f(x)=∫(1/x)dx=lnx+c(c为常数)f(x)过(e^2,3),于是有3=ln(e^2

一曲线经过点(-1,2)且在任一点的切线斜率等于该点横坐标的平方,求该曲线的方程.

答:设曲线函数为y=f(x)依据题意有:斜率k=y'=f'(x)=x^2两边积分得:y=f(x)=(1/3)x^3+C因为:f(x)经过点(-1,2)所以:f(-1)=-1/3+C=2解得:C=7/3

一曲线过原点,且在任一点(x、y)的切线的斜率等于2x,求该曲线方程

切线的斜率等于2x在任一点(x、y)的切线的斜率等于2x,即导数是2x,则原函数是f(x)=x^2+C过原点,则有f(0)=0+C=0,C=0故函数是f(x)=x^2则y'=2x所以y=x²

一曲线通过点(e的3次方,3),且在任一点处的切线斜率等于该点横坐标的倒数,求曲线

依题意y'=1/x所以,y=∫1/xdx=lnx+C又过点(e^2,3)所以,3=2+C解得,C=1于是,曲线方程为y=lnx+1

一曲线通过点(1,-1),且在任一点处的切线的斜率等于该点横坐标的平方的倒数,求该曲线的方程

由题意,y'=1/x^2,且y(1)=-1积分得:y=-1/x+C,代入y(1)=-1得:-1=-1+C,得C=0因此该曲线为y=-1/x

一曲线通过点(e^2,3,且在任一点处的切线斜率等于该点横坐标的倒数,求该曲线的方程

微分方程y'=1/x则y=ln|x|+c由曲线通过点(e^2,3),将该点坐标代入上式,得c=1该曲线的方程为y=ln|x|+1

一曲线通过点(e^2,3),且在任一处的切线的斜率等于该点横坐标的倒数,求该曲线的方程.

应该加绝对值,y=ln|x|+1代入题中都満足,按解法也有绝对值.书上的答案不一定全对,毕竟编本书的工作量太大.

一曲线通过点(e²,3),且在任一点处的切线斜率等于该点横坐标的倒数,求该曲线的方程.

结果有问题,应带绝对值的.分析可知,如果带绝对值,曲线分两支,x

1.一曲线通过点(e的二次方,3),且在任一点处的切线斜率等于该点横坐标的倒数,求该曲线的方程.

y'dy/dx=1/x-->dy=(1/x)dx-->y=ln|x|+c将(e^2,3)代入上式,-->c=1,故所求曲线的方程为y=1+ln|x|

某曲线在任一点的切线的斜率等于1+2e2x,且过点(0,3),求切线方程

曲线在任一点的切线的斜率等于1+2e2x,说明曲线方程为y=e^2x+x+c(c是一个常数)代入点(0,3),解得c=2因此y=e^2x+x+2

已知曲线y=f(x)在任一点处的切线斜率为k(k为常数),求曲线方程

f(x)切线斜率是k则f'(x)=k因为x'=1所以(kx)'=k则(kx+C)'=(kx)'+C'=k+0=k其中C是常数所以f(x)=kx+C,其中C是任意的常数