已知抛物线y²=2px,焦点为f,直线l与抛物线交于AB,且AF BF=8
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:28:02
直线为为y=x-p/2直接用抛物线第一定义,准线为x=-p/2AB=AF+BF=x1+p/2+x2+p/2=x1+x2+pAB=4,所以x1+x2+p=4x=y+p/2带入y^2=2px,有y^2=2
要证明以AB为直径的圆必与抛物线的准线相切,就要满足圆心O到准线的距离为AB一半(即半径).已知A(X1,Y1),B(X2,Y2),设焦点为F因为抛物线上任一点到焦点的距离等于其到准线的距离所以AB=
设A(x1,y1)B(x2,y2)直线AB的方程为x=my+p/2,与y²=2px联立得y²-2pmy-p²=0,所以y1y2=-p²x1x2=y1²
焦点F(p/2,0),设过焦点的直线方程为x=my+p/2,代入抛物线方程得y^2=2p(my+p/2),即y^2-2pmy-p^2=0,设A(x1,y1),B(x2,y2),则y1+y2=2pm,y
点P(6,y)在抛物线y^2=2px(p>0)上,准线为l:x=-p/2,P到焦点的距离等于P到准线的距离∵PF=8∴6-(-p/2)=8∴p=4∴F到准线距离为p=4
(1)A(X1,Y1)B(X2,Y2)AB直线方程为:y=k(x-p/2)代人:y^2=2px得:k^2*(x-p/2)^2=2pxk^2*x^2-(p*k^2+2p)x+k^2*p^2/4=0x1*
1.设直线AB的斜率为k(a为直线AB的倾斜角)当a=π/2时,AB垂直于x轴,x=p/2得y=±p所以AB的坐标分别为(p/2,p),(p/2,-p)y1*y2=-p^2,x1*x2=p^2/4当a
已知d为抛物线y=2px²(p>0)的焦点到准线的距离.则pd=?x²=(1/2p)y,2P=1/2p,故P=1/4p,P/2=1/8p,焦点F(0,1/8p),准线方程y=-1/
准线是x=-p/2设另两点横坐标是a和b,焦点是F抛物线上的点到焦点距离等于到准线距离那两点到准线距离=a+p/2和b+p/2等边三角形所以a=b横坐标=a,所以y^2=2pa所以两点是(a,√(2p
X²/3一y²=1的右焦点为(2,0)所以p=4,抛物线C:y²=16x如图,可以看出过F点垂直于l的线段就是最短距离用公式得14/5再问:我也算到这个,不知对不对再答:
第一问你干脆设点P(x,y),根据:P到顶点的距离等于P到l的距离,列出式子即可得出已知准线,可知道准线横坐标,假设存在点M(-p/2,a),那么你可列出直线方程,进行与抛物线联立,求出x1+x2,x
焦点为(1,0),所以p=2,抛物线方程为y^2=4xa=1时,点斜式(y-0)/(x-1)=2解得y=2x-2代入得(2x-2)^2=4x化简得x^2-3x+1=0设A(x1,2x1-2)B(x2,
答:①焦点x轴上设抛物线方程:y²=2px判断焦点(p/2,0)点②设A点坐标(x1,y1),B点坐标(x2,y2)设AB斜率k线段AB垂直平分线斜率k'则:kk'=-1所:(y1-y2)/
|AB|=x1+p/2+x2+p/2=x1+x2+p(x1+x2)=9-p|AB|=√(k^2+1)|x1-x2|=3|x1-x2|=9(x1-x2)^2=9y=k(x-p/2)k^2(x^2-px+
点A到焦点的距离等于到准线的距离,而y^2=2px准线方程为x=-1/2p;所以1/p+4=5;解之得p=2;抛物线方程为y^2=4x.
解方程组y²=2pxy=x得y^2=2pyy=0y=p所以交点为(0,0)和(p,p)因为P(2,2)为AB的中点所以(0+p)/2=2p=4
准线方程为x=-p/2点(2,1)到准线x=-p/2的距离为:2+p/2=3所以p=2抛物线方程为:y^2=4x.
用抛物线的第二定义.