已知抛物线x2=2y的焦点为F.过f作倾斜角为45

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:22:43
已知抛物线x2=2y的焦点为F.过f作倾斜角为45
已知抛物线y^2=2px的焦点为F点p1(x1,y1)p2(x2,y2)p3(x3,y3)在抛物线上且2x2=x1+x3

是这题吗?已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有(C)  A.|FP1|+|FP2|=|FP3|

已知抛物线C的方程y^2=4x,F为抛物线的焦点,顶点在原点上

y^2=4x,抛物线的焦点F(1,0)设圆心为(a,b),半径为r圆与x轴相切,那么r=|b|,圆与抛物线准线x=-1相切,则a+1=|b|又b^2=4a∴(a+1)^2=b^2=4a解得a=1,b=

数学题求解:已知抛物线y=x2上两点A、B,且直线AB过抛物线y=x2的焦点F,过A、B分别作抛物线

(1)抛物线y=x^2①的焦点F是(0,1/4),y'=2x,设AB:y=kx+1/4,代入①,x^-kx-1/4=0,设A(x1,x1^),B(x2,x2^),P(x,y),x1≠x2,则x1+x2

已知抛物线C:x^2=4y的焦点为F,点P为抛物线下方的一点,

(1):→P(1,-2)y`=x/2,设A(m,m²/4),B(n,n²/4)在A点切线斜率k1=m/2在B点切线斜率k2=n/2PA直线斜率:k1=(m²/4+2)/(

已知抛物线y∧2=4x的焦点为F.过F的直线l与抛物线交A(x1,x1)B(x2,y2) 两点.T为准线与x轴焦点.现在

设l:x=my+1,与抛物线方程联立消x,可得y1*y2,y1+y2,再可得x1*x2.x1+x2,向量TA·向量TB=1用x1x2y1y2表示可得m,1/m即为斜率

已知抛物线y^2=4x的焦点为F 准线为l

纯粹的体力活儿啊!首先,抛物线的方程可以写成(x2)^2=2p(y-b).且限制条件为p<1/2.由

抛物线y^2=4x的焦点为f,过f的直线交抛物线于a(x1,y1),b(x2,y2)两点,则y1y2/x1x2=

解据题意抛物线焦点为(1,0)当过焦点的直线斜率不存在时,直线方程为x=1则x1=1,x2=1,y1=2,y2=-2y1y2/x1x2=-4当直线斜率存在时,设为k则直线方程为y=k(x-1)那么y1

已知AB是抛物线y^2=2px(p>0)的焦点弦,为抛物线焦点,点A(X1,Y1),B(X2,Y2).求证:

1.设直线AB的斜率为k(a为直线AB的倾斜角)当a=π/2时,AB垂直于x轴,x=p/2得y=±p所以AB的坐标分别为(p/2,p),(p/2,-p)y1*y2=-p^2,x1*x2=p^2/4当a

已知抛物线x2=4y的焦点F和点A(-1,8),P为抛物线上一点,则|PA|+|PF|的最小值是(  )

抛物线y=14x2的标准方程为x2=4y,p=2,焦点F(0,1),准线方程为y=-1.设p到准线的距离为PM,(即PM垂直于准线,M为垂足),则|PA|+|PF|=|PA|+|PM|≥|AM|=9,

已知抛物线X2=4Y,A,B为过焦点F的动直线与抛物线上的两交点,过A,B两点分别作抛物线的切线,设其焦点为M

1,设A(X1,Y1),B(X2,Y2),K1为过A点的切线线斜率,K2为过B的切线斜率,所以K1=2/x1,K2=2/x2,所以K1*K2=4/x1x2=4/(-4)=-1.所以AM垂直BM2,M,

已知P(4,-1),F为抛物线y^2=8x的焦点,M为抛物线上的点

过M作MN//x轴交准线x=-2于N则:MF=MN所以,MP+MF=MP+MN≥PN所以,P、M、N三点共线时,MP+MF值最小所以,M点纵坐标=P点纵坐标=-1M点横坐标=(-1)^2/8=1/8即

已知AB是抛物线y^2=2px(p>0)的焦点弦,F为抛物线焦点,点A(x1,y1),B(x2,y2).求三角形AOB的

焦点为(p/2,0)设过焦点的直线为x=ay+p/2.代入y²=2px,消x得:y²-2apy-p²=0所以y1+y2=2ap,y1y2=-p²,∴|y1-y2

数学题——抛物线已知AB是抛物线y^2=2px(p>0)的焦点弦,F为抛物线焦点,点A(x1,y1),B(x2,y2).

(1)(y-y1)/(x-x1)=(y-y2)/(x-x2)y1^2=2px1y2^2=2px2带入,得y1/(p/2-y1^2/2p)=y2/(p/2-y2^2/2p)化简,得y1y2(y1-y2)

抛物线x2=4y的焦点为F,A是抛物线上一点,已知|AF|=4+2,则AF所在直线方程是……?

1)设A(x1,y1),B(x2,y2),M(xo,yo),焦点F(0,1),准线方程为y=-1,显然AB斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x^2消去y得:x^2-4kx-

已知抛物线y^2=4x的焦点为F 准线为l

哈哈,这种题估计只要大学读的非数学非物理专业的,哪怕高中数学再牛也答不出来了!

已知抛物线Y=1/2X,O为坐标原点;F为抛物线的焦点.求OF的值

Y=1/2X是一条直线.如果方程是Y^2=1/2X.那么F坐标(1/8,0)|OF|=1/8.

已知抛物线C:x2=4y的焦点为F,直线l过点F交抛物线C于A、B两点.

(Ⅰ)设直线l方程为y=kx+1代入x2=4y得x2-4kx-4=0设A(x1,y1)、B(x2,y2),则x1+x2=4k,x1x2=-41y1+1y2≥21y1•1y2=21x214•1x224=