已知抛物线C:x²=4y的焦点为F,不经过坐标原点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:55:34
已知抛物线C:x²=4y的焦点为F,不经过坐标原点
设F为抛物线y方=4x的焦点,A,B,C为该抛物线上3点

设A(x1,y1),B(x2,y2),C(x3,y3)F(1,0)向量FA+向量FB+向量FC=(x1+x2+x3-3,y1+y2+y3)=(0,0)所以x1+x2+x3-3=0,x1+x2+x3=3

已知a,b为抛物线y=(x-c)(x-c-d)-2与x轴焦点的横坐标,a

若果是填空或选择题,建议用解析几何法,画图,如图:无论d>0或d<0,都有a<c<d,因而|a-c|+|c-b|=b-a;如果是解答题,则不建议采用解析几何法,可以解答如下:∵

椭圆与抛物线的方程已知抛物线C:y^2=2px(p>0)的焦点F与椭圆(x^2)/5+(y^2)/4=1的一个焦点

椭圆:焦点在x轴上,x∧2/a∧2+y∧2/b∧2=1(其中a,b>0且a>b)焦点在y轴上,x∧2/b∧2+y∧2/a∧2=1(其中a,b>0且a>b)抛物线方程,y∧2=2px或者x∧2=2py

已知抛物线C:y^2=4x的焦点为F,过F且斜率为1的直线与抛物线C交于A、B两点

答:(1)抛物线y^2=4x的焦点F为(1,0),准线为x=-1,AB直线为:y-0=1*(x-1),即:y=x-1代入抛物线方程整理得:x^2-6x+1=0根据韦达定理:x1+x2=-b/a=6,x

已知抛物线C的方程y^2=4x,F为抛物线的焦点,顶点在原点上

y^2=4x,抛物线的焦点F(1,0)设圆心为(a,b),半径为r圆与x轴相切,那么r=|b|,圆与抛物线准线x=-1相切,则a+1=|b|又b^2=4a∴(a+1)^2=b^2=4a解得a=1,b=

已知抛物线C:x^2=4y的焦点为F,点P为抛物线下方的一点,

(1):→P(1,-2)y`=x/2,设A(m,m²/4),B(n,n²/4)在A点切线斜率k1=m/2在B点切线斜率k2=n/2PA直线斜率:k1=(m²/4+2)/(

已知A,B为抛物线C:y²=4x上不同两点,且直线AB的倾斜角为锐角,F为抛物线上的焦点

再问:答案是4/3,没有负号k>0再答:哦哦哦,锐角锐角,太粗心了

设F为抛物线y^2=4x的焦点,A、B、C为该抛物线上三点

解抛物线y^2=4x的准线是x=-1焦点是(1,0)抛物线上一点到焦点的距离:x-(-1)=x+1FA+FB+FC=0{向量},∴xA-1+xB-1+xC-1=0∴xA+1+xB+1+xC+1=6FA

已知抛物线C:y^2=4x,若椭圆的左焦点及相应准线与抛物线C的焦点F和准线l分别重合,求椭圆短轴端点B与焦点F的连线段

抛物线C:y^2=4x焦点F(1,0)准线l:x=-1设中点P(m,n)由中点坐标公式知端点B(2m-1,2n)则椭圆中心(2m-1,0)则可设椭圆方程[x-(2m-1)]^2/a^2+y^2/b^2

已知抛物线C:y^2=4px(p>0)的焦点在直线l:x-my-p^2=0上

焦点为(p,0)代入直线方程p-0-p^2=0p=0(舍)或p=1,所以方程为y^2=4xx=my+1代入y^2=4x得y^2-4my-4=0,有两个交点,所以16m^2+16>0,所以m∈R

已知椭圆的中心在原点,其左焦点F1与抛物线y的平方=-4x的焦点重合,过F1的直线L与椭圆交于A,B两点,与抛物线交于C

1、由于抛物线y^2=-4x的焦点坐标为(-1,0),故c=1(对于椭圆而言)当直线L与x轴垂直时,|CD|:|AB|=2√2此时|CD|=4,故|AB|=√2又|AB|=2b^2/a=√2a^2-b

已知抛物线y^2=4x,焦点F

F(1,0)由于AB不可能平行y轴,可设AB:ky=x-1(x-1)^2=y^2k^2=4xk^2x^2-(2+4k^2)x+1=04=x1+x2=2+4k^2k=根号2/2x^2-4x+1=0|x1

已知抛物线c:y^2=4x的焦点为F,过F的直线l与c相交于两点A、B 求|AB|最小值

焦点F为(1,0)当斜率不存在时,AB为通径,|AB|=4当斜率存在时,设直线l的斜率为k,A、B坐标为(x1,y1),(x2,y2)则直线l:y=k(x-1)联立y^2=4x得k^2x^2-(2k^

.已知抛物线y的平方=4x 的焦点为 f,

焦点为(1,0),则直线不与x轴垂直的直线设为y=√3(x-1),直线与x轴垂直的直线设为x=1,把问题补全再问:已知抛物线y的平方=4x的焦点为f过f作斜率为√3的直线与抛物线在x轴上方的部分交于m

已知圆C:x^2+y^2-4x=a,抛物线y^2=4x,过抛物线焦点F的直线L与圆交于M,N,与抛物线相交于A,B

假设存在这样的直线,则FA·FB=MN^2如果斜率不存在,检验一下是否可以,以下讨论斜率存在的情况:注意运用抛物线上一点的性质:设A、B的横坐标分别是x1,x2,则联立直线方程与抛物线方程消元后,可以

已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线y=0.25x^2的焦点,

*?这个是什么哎?o..抛物线是Y=2PX.知道y=0.25x^2.可以求得P=1/8.因为P=2C求得C=1/16.知道离心率.离心率公式是:E=C/A.求得A知道A知道C.用A平方=B平方+C平方

已知抛物线的焦点是圆x^2+y^2+4y=0的圆心,求抛物线的方程

x^2+y^2+4y=0x^2+(y+2)^2=4圆心为(0,-2)则抛物线焦点为(0,-2)位于y轴负半轴.则抛物线的方程为:x^2=-8y在抛物线x2=-2py中,焦点是(0,-p/2),准线的方

问:已知抛物线C:y^=4x的焦点为F,过点F的直线L与C相交于A,B两点

F(1,0)过点F的直线L,交抛物线C:y^=4x于A,BL:y=k(x-1)x=(y+k)/k,xA-xB=(yA-yB)/ky^2=4x=4*(y+k)/kky^2-4y-4k=0yA+yB=4/

已知抛物线y=4x上的一点p到y轴的距离为2,则点p到此抛物线的焦点的距离是

答:抛物线y^2=4x=2px2p=4解得:p=2焦点F(2,0),准线x=-2点P到y轴的距离为2,则到x=-2的距离为2+2=4所以:点P到焦点的距离为4