已知平行四边形ABCD 若BA=BC=6,DA=DC=8
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 17:00:41
∵ACDE是平行四边形,∴CF=FE,AF=DF.∴S△AEF=S△CDF=S△CAF=1/2S△ACD=1/4S▱ABCD.∵S平行四边形ABCD=12,∴S△AEF=3.
1,平行四边形ABCD的面积.4*6*sin30°=12平方厘米2,y与t的函数关系式S△BCD=6,△PQN与△DQN面积相等,△DQN与△BCD相似.那么y=12*[(4-t)/4]^2即y=3/
你问的问题是:已知在平行四边形ABCD中,AB=1/2BC,延长AB至F,使BF=AB,再延长BA至E,使AE=BA,请你请你做做、、、、、、、?,不清楚
证明:设EC、DF分别交AD、BC于H、G.连HG.AE=AB AD∥BC ∴EH=HCAE=AB AD∥BC
OA=→=1/2*CA→=1/2*(BA→-BC→)=1/2*(b-a)
∵BA∥CD,∴△AEF∽△CDF,且相似比=AE/CD=AE/AB=1/2,∴S△AEF/S△DCF=1/4①,∵AD∥BC,∴S△AEF∽△BEC,且相似比=EA/EB=1/3,∴S△AEF/S△
四边形ABCD是平行四边形,∠D=∠B,∴∠B=∠ACE.在△ACD和△ACF中,∠CAF=∠CAD,∠D=∠ACE.∴△ACD∽△ACF.∴AF/AC=AC/AD,AF=AC²/AD=36
因为ABCD中AD=BC,又DE=BF,所以AE=CF,且两者平行,所以四边形AECF是平行四边形,所以AF//CE,所以四边形AGCH是平行四边形,所以AC、GH互相平分
分析:要求CF的平方=GF×EF,即求CF/GF=EF/CF.这两个比分别在两对相似三角形中,所以要在这两对相似三角形中找到桥梁使它们相等.在□ABCD中∵AD‖BC(平行四边形对边平行)∴∠GDF=
角边角证EBF和FBC全等,得出∠EFB=90°就行再问:那几个角?再答:三角形EAFDFC是全等的。一个对顶角,一个内错角,还有AE和DC,证明两三角形全等。那就是说F是AD中点。然后边边边证三角形
证明:ABCD是平行四边形,所以BE平行于DC,GD平行于BC,又因为角GFD=角BFC,所以GFD相似于BFC,推出GF:CF=DF:BF;因为角EFB=角DFC,所以EFB相似于DFC,推出CF:
∵ACDE是平行四边形,∴CF=FE,AF=DF.∴S△AEF=S△CDF=S△CAF=S△ACD=S▱ABCD.∵S平行四边形ABCD=12,∴S△AEF=3.
(1)证明:∵平行四边形ABCD,∴AB∥DC,∴∠BEF=∠FDC.(2)证明:∵平行四边形ABCD,∴AB=DC,∵EF=DC,∴EF=AB,∵AE=ED,∴EA+AB=ED+EF,∴EB=DF,
∵平行四边形ABCD,∴AB平行且等于DC,AD平行且等于BC∵FD=DC,BE=AB,∴FD=BE有∵AD=BC∴AD+DF=CB+BE,即AF=CE∴四边形AECF为平行四边形
∠F=∠DCFBC=2CD,ED=EA=1/2ADDE=CD.∠DEC=∠DCF∠DEC=∠BCF∠F=∠BCF
(1)∵由条件可知△ABC和△ADC都是等腰直角三角形,∴∠BCA=∠D1=45°,∴CQ∥D1C1,∴四边形CD1C1Q是平行四边形.∴C1D1=B1A1=AB=8,CD1=A1D1-AC=82-8
由BF=2AF知BF=2/3AB从F点向E点作延长线,从D点向C点作延长线,两延长线交于H点.因角FEB=角CEH,CH//BF,且BE=EC,故三角形FBE与三角形CEH全等.故有CH=BF=2/3
1.证明:在△FAE和△CDE中因为∠F=∠ECD∠FEA=∠CEDAE=ED所以△FAE≌△CDE所以CD=AF2.证明:因为CD=AFAB=CD所以AF+AB=2CD所以BF=BC所以∠F=∠BC
(1)证明:∵ABCD是平行四边形∴AB//CD∴∠FAD=∠D,∠F=∠DCE∵E为AD的中点∴AE=DE∴⊿AEF≌⊿DEC(AAS)∴CD=FA(2)当BC=2AB时,∠F=∠BCF∵CD=AF
做CD延长线,交EF于P因为,DE//BC,CE//BD所以,四边形BCED是平行四边形.所以,DE=BC因为,平行四边形ABCD所以,AD=BC所以,AD=DE在三角形AEF中因为,DP//AF,A