已知垄断者的成本函数为TC=0.5Q^2 10Q
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:58:58
垄断价格P下的利润为f(P)=PQ-TC=P(360-20P)-6(360-20P)-0.05(360-20P)^2=-40(P^2-30P+216)令f'(P)=0,得2P-30=0,于是利益最大的
MC=TC'=2Q+40P1=120-10Q1MR1=120-20Q1MR=MC120-20Q1=2Q1+40Q1=80/22=3.6P1=120-36=84P2=50-2.5Q2MR2=50-5Q2
当P=55时,利润Y=收入-成本,即利润Y=P*Q-TC由于TC=0.5Q^2+10Q,P=55,所以利润Y=P*Q-O.5Q^2-10Q=-0.5Q^2+45Q对利润函数求导,可得Y'=-Q+45由
收入R=QP=-4Q^2+9400Q利润L=R-TC=-4Q^2+6400Q-4000dL/dQ=-8Q+6400令dL/dQ=0得Q=800(1)该厂商的均衡时的产量Q=800(2)该厂商的均衡时的
好的反需求函数为P=8-0.4Q.求该厂商实现利润最大化时的产量、法1;maxπ=P*Q-C(收益减成本)maxπ=(8-0.4Q)*Q-(0.6Q^2+3Q+5)=8Q-0.4Q^2-0.6Q^2-
设Q1,Q2,Q=Q1+Q2,利润=PO-TC1-TC2,(为关于Q1,Q2的二元函数),利润分别对Q1,Q2求偏导数等于0,组成二元一次方程组,解出Q1,Q2,即为两个厂商的产量,进而算出价格.
TVC=TC-70.因为总成本=总可变成本+不变成本,显然本式中,永远不变的就是70,那么它就是固定成本,所以TVC=Q3-4Q2+100QAVC=TVC/Q我想你说的应该是平均可变成本吧,那个式子是
MC=TC'=8+0.1QP=20-Q/20MR=20-0.1QMR=MC8+0.1Q=20-0.1QQ=60,P=17利润π=PQ-TC=60*17-8*60-0.05*60^2=360
边际成本MC=成本(TC)’Q=2,(条件MR=MC)总收益TR=P*Q=(50-3Q)*QMR=(TR)’Q=50-6Q=2得Q=8(产量)价格P=50-3Q=50-3*8=26利润π=P*q-TC
垄断厂商利润最大化的条件是MR=MCMR=dTR/dQ=d(P*Q)/dQ=10-6QMC=dTC/dQ=2Q+2由MR=MC得到10-6Q=2Q+2得到Q=1;P=7利润=TR-TC=4
解.依题可得MR=10-6Q;MC=TC'=2Q+2利润最大时有MR=MC即10-6Q=2Q+2解得Q=1P=10-3=7利润=PQ-TC=1*7-(1+2)=4
MC=TC'=8+0.1QP=20-Q/20MR=20-0.1QMR=MC8+0.1Q=20-0.1QQ=60P=17利润π=PQ-TC=60*17-8*60-0.05*60^2=360再问:可不可以
若政府试图对垄断企业采取规定,使其达到完全竞争的产量水平,及边际成本定价法因此P=MC6+0.1Q=18-0.05QQ=80P=14TC=480+0.05*6400=600利润=TR-TC=1120-
(1)由题意可得:MC=且MR=8-0.8Q于是,根据利润最大化原则MR=MC有:8-0.8Q=1.2Q+3解得Q=2.5以Q=2.5代入反需求函数P=8-0.4Q,得:P=8-0.4×2.5=7以Q
缺乏的情况下,价格没有啊,阿尔法Alpha
收入R=QP=-4Q^2+9400Q利润L=R-TC=-4Q^2+6400Q-4000dL/dQ=-8Q+6400令dL/dQ=0得Q=800(1)该厂商的均衡时的产量Q=800(2)该厂商的均衡时的
联立两个方程,把需求函数带入总成本函数里.得一个二元一次方程,再求导.
MC=2Q+8Q=Q1+Q2=12-0.2P+12.5-0.1P=24.5-0.3PP=245/3-10/3*QMR=245/3-20/3*QMR=MC245/3-20/3*Q=2Q+8Q=8.5P=
缺少条件啊,售价无啊,
垄断厂商的利润最大化,π=p(q)*q-c(q)p=8-2/5q代入上式π=(8-2/5q)*q-0.6q^2-3q-2就一阶导数为0得出q然后根据这个数字,你就可以求得其他的因素,价格收益最大化TR