已知在正方形ABCD中,若AB=BC=CD=DA=12
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 16:47:59
证明:分别过点G、H作GN⊥AB,HM⊥BC,垂足分别为N,M,则∠GNE=∠HMF=90°且易得GN=HM,由正方形ABCD得∠B=90°,由EG⊥FH得∠EOF=90°所以∠OEB+∠BFO=18
你可以以A为圆点,AB为X轴,AD为Y轴,建立直角坐标系,那么A(0,0),M(2,1),N(x,y),0≦x≦2,0≦y≦2(x,y不可以同时为0),那么向量AM=(2,1),向量AN=(x,y),
过P作PM⊥CD,PN⊥AD∵AC是正方形对角线∴PM=PF,PE=PN∵PM⊥CD,PN⊥AD∴PNDM为矩形∴PN=DM∴PE=PN=DM∵PM=PF,PE=PN=DM∠PMD=∠FPE=90°∴
角B=角C,同时CD/BE=CE/BF所以△DCE∽△EBF可知角CED=角BFE=90度-角BEF即角CED+角BEF=90度所以∠FED=90°
以A为坐标原点,以AB方向为x轴正方向,以AD方向为y轴方向建立坐标系,则AM=(2,1)设N点坐标为(x,y),则 AN=(x,y),则0≤x≤2,0≤y≤2令Z=AM•AN=2x+y.将
如果是这样的话,EF=根号74而ED=根号65当EF=EH时,必定使H不在AD边上所以a=5不存在再问:没看懂再答:如果BF是5,BE是7,那么EF的长就是根号74那是一个菱形,所以EH也是根号74,
将三角形AED沿点D顺时针旋转90度,得三角形DCE'可得CE'=AE,DE'=DE,角EDE'=90度又ae+cf=ef,则FE'=FE,可得三角形DEF全等于三角形DE'F所以角EDF=角E'DF
好评给我把再答:再问:答案拿来再答:发了再问:采纳了
连接DF,设正方形边长为4,则BF=1,BE=EC=2,AF=3,CD=AD=4利用勾股定理得:EF=√5,DE=√20,DF=5∴EF的平方+DE的平方=DF的平方用勾股定理逆定理知:角FED=90
(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C
(1)如图,过点E作PQ垂直于AB,分别交AB、CD于点P、Q,∵∠QFE+∠QEF=∠NEP+∠QEF=90°∴QFE=∠NEP在△EPN和△EQF中,∠FQE=∠EPN∠QFE=∠PENEF=NE
(请按如下描述同时作图)证明:作FM⊥DA,EN⊥CDEG与FH交于O;EN与FH交于S∵ABCD是正方形∴FM=AB=BC=EN,且EN⊥FM∵EG⊥FH∴∠EGN=∠ESO∵EN⊥FM∴∠FHM=
S⊿DEF=16﹙1-1/4-3/8-1/16﹚=5﹙面积单位﹚
(1)因为SA垂直平面则AD垂直于SA.因为ABCD是正方形则AD垂直于AB所以AD垂直于平面SAB则AD垂直于SB(2)由(1)知AD垂直于平面SAB即BC垂直于平面SAB所以角BSC为直线SC与平
如图,边长AB=4BE=EC=2BF=1/4AB=1Sdce=1/2X4X2=4Sbef=1/2x2x1=1Sdaf=1/2x4x3=6Sdef=Sabcd-Sdce-Sbef-Sdaf=5
证明:延长CD到点P,使DP=AE;连接EP,交AD于QABCD为正方形,所以∠PDQ=∠EAQ=90∠PQD=∠AQEDP=AE所以△PDQ≌△EAQ,AQ=DQAD=CD,AE=DPCE=AD+A
作FE垂直AP于E,连接PF.因为角BAF=角PAF,角B=角AEF=90度,AF=AF,所以,三角形ABF全等三角形AEF,所以,AB=AE,BF=EF.因为AP=AB+CP,所以,EP=CP;又P
延长FC到G使CG=AE连接DG则∠DCG=90=∠DAB且在正方形ABCD中AD=DC则三角形ADE全等于三角形DCG则DE=DG∠CDG=∠ADE∠EDF=∠FDG=∠FDC+∠CDG=∠FDC+
在正方形ABCD中AD=AB=4,∠A=∠B=90°∵AM=1,BN=0.75∴BM=3∴AD/AM=BM/BN=4∴⊿ADM∽⊿BMN∴∠ADM=∠BMN∵∠ADM+∠AMD=90°∴∠BMN+∠A
第一问是错的吧?应该是求证△ABE相似于△DFA吧?①∵∠B=90°,DF⊥AE,∠DAF=∠AEB,∴的证②∵AB=2,E是中点,所以S△ABE=1,∴S△ADF=4/5,S四边形=11/5