已知在M为△ABC的边BC的中点,求证AB² AC²=2(AM² BM²)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:06:34
设A的坐标为(0,3),B坐标为(m,0),则C坐标为【(m+4),0】外心M在BC的中垂线上,外心横坐标为m+2外心M在AB的中垂线上,由过AB的中点(m/2,3/2),斜率为m/3(注与AB斜率乘
证明:取AB的中点E,连接ME∵AD⊥BC于,BE=AE∴DE=BE=AE=AB/2∴∠B=∠EDB=2∠C∵BM=MC∴EM//AC∴∠DME=∠C∴∠DEM=∠EDB-∠EMD=2∠C-∠C∴∠D
证明:设AO与DE交于点N,∵DE//BC∴NE/BM=EO/BO=DE/BC=AE/AC=NE/CM故:BM=CM
【白天,时间充裕,给你两种证法】证法1:在CB的延长线上截取BE=AB,连接AE则∠E=∠BAE∵∠B=∠E+∠BAE=2∠E∠B=2∠C∴∠E=∠C∴AE=AC,即⊿AEC是等腰三角形∵AD⊥BC∴
分析:(1)可通过全等三角形来证明EN与MF相等,如果连接DE,DF,那么DE就是三角形ABC的中位线,可得出三角形ADE,BDF,DFE,FEC都是等边三角形,那么∠DEF=∠DFM=60°,DE=
1、DF⊥AB于F,DE⊥AC于E,∠A=90°AEDF是矩形,DF=AE2、BC=6,BD=2,则AB=AC=3√2DF=BD*√2/2=√2,DE=CD*√2/2=2√2M是中点,M到AB的高AC
证明:连结AM∵∠BAC=90°,AB=AC,M是BC的中点∴AM=BM,∠BAM=∠CAM=45°,AM⊥BC∵DF⊥AB,DE⊥AC,∠BAC=90°∴四边形AFDE是矩形,∴DF=AE∵DF⊥A
D在题中没有作用连接AM∵△ABC是等腰直角三角形,M是BC的中点∴AM⊥BC,AM=BM=1/2BC∠MAE=∠MAC=∠B=45°∵BF=AE∴△BFM≌△AEM(SAS)∴FM=EM∠BMF=∠
取AB中点E,连DE,ME则ME‖AC,ED=EB∴∠EMD=∠C,∠EDB=∠B∠EDB=∠EMD+∠DEM又∠B=2∠C∴∠EMD=∠DEM∴DE=DM而DE=1/2AB∴DM=1/2AB
(1)△abc中为等边三角形AB=BC,角ABM=角BCN=60°BM=CN所以三角形ABM全等于三角形BCN那么有角BAM=角CBN在三角形ABM中,有角BAM+角ABM+角BMA=180°在三角形
设△ABC外接圆半径为R分三种情况:1、假设外心在△ABC内,则有外接圆半径的平方等于外心到边的距离的平方加上该边的一半的平方之和:R^2=(24/2)^2+6^2,R=6√52、假设外心在△ABC上
CN、MN、AM相等CA=CB,∠MON=60°,∠MON=∠A得CA=CB=AC,等边三角形AM=1/2AC=CN=1/2BC=MN=1/2AB,成立再问:不对吧,看图就知道不对,我把图发给你。不过
倍长fm,至F1可得BF1=FCEF1=EFEB+BF1大于EF1所以EB+FC>EF
题目出错,AB=2根号五,若点M为AB的中点,那AM=根号五
(1)∵DF⊥AB,DE⊥AC,∠A=90°∴四边形AFDE是矩形,∴DF=AE(2)△MEF是等腰直角三角形证明:连结AM∵AB=AC,∠A=90°,∠B=45°又DF⊥AB,∴∠BDF=∠B=45
取AB中点N,连接DN、MN.因为,MN是△ABC的中位线,所以,MN‖AC,可得:∠DMN=∠C.因为,DN是Rt△ABD斜边上的中线,所以,DN=BN=(1/2)AB,可得:∠BDN=∠B.因为,
∵AC=BC、∠ACB=90°,∴∠B=45°.∵∠ACB=90°、AD=BD,∴CD=BD,∴∠BCD=∠B=45°,∴∠DCM=45°.∵AC=BC、AM=CN,∴CM=BN.由CM=BN、CD=
证明:∵AB=BC;D是AC的中点.∴∠DBC=(1/2)∠ABC=30°;又CE=CD,∠E=∠CDE=(1/2)∠ACB=30°.∴∠DBC=∠E,DB=DE;又DM⊥BC,故M是BE的中点.(等
如图:连接BM,由圆内接四边形的性质可知,∠CNM=∠CAB,∠CMN=∠CBA,∴△CNM∽△CAB,又△ABC的面积是△CMN面积的4倍,可知相似比CMCB=12,AB为直径,∠BMC=90°,则
以A为原点,AB为x轴正半轴,建立直角坐标系xoy既然AD的长度为常量,不妨设AD与x轴正半轴夹角为θ(θ∈(0,2π))则D(mcosθ,msinθ)∵B(2a,0)∴C(2mcosθ-2a,2ms