已知圆O中,AB为直径,CD为弦,AE垂直于BD于E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:20:05
连接CO交AF于H连OEAC弧等于FC弧所以C为AF弧的中点则OC⊥AF因为CD⊥ABOC=OA∠COD=∠AOH△COD≌△AOH则OD=OH则CH=AD可推△EAD≌△EVHAE=CE
参考:如图所示,已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C,若D为AD中点,求证:直线CD是圆O的切线证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对
连接AD,因为AB为直径,所以∠ADB=90度AD⊥CB△ACD∽△ADBAD/BD=CD/ADAD=√3(舍负)AB=√[(√3)²+3²]=2√3
证明:连接AC ∵∠AOD=∠BOC ∴弧AD=弧BC ∵弦CE‖AB ∴∠BAC=∠ACE ∴弧BC=弧AE ∴弧AE=弧AD
是弦AD长为根号2吧?
证明:过O作OG⊥CD,由垂径定理可知OG垂直平分CD,则CG=DG,∵CE⊥CD,DF⊥CD,OG⊥CD,∴CE∥OG∥DF,∵CG=DG,∴OE=OF,∵OA=OB,∴AE=BF.再问:为什么OE
解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,
思路:△GBD∽△FOA,GB:FO=BD:OAGB/BD=FO/OA=FO/(2FO)=1/2∵弧EB对应圆周角,∠BDG=∠OAF,∠AOF=∠OCB+∠OBC=∠OBC+∠ODB=∠GBD∴△G
连接CO,设半径CO=R.则OE=OA-AE=R-4.OE^2+CE^2=CO^2,即(R-4)^2+36=R^2,R=6.5
因为MN过圆心,且经过AB中点,所以MN垂直于AB,所以MN垂直于CD,所以MN与CD交于CD的中点,因此F为CD中点.因为MN垂直于AB和CD,所以M,N为狐AB,CD的中点,即狐AM=BM,CN=
证明:连接OE,三角形EOC为等腰三角形,角OCE=角CEO因为CE//AB,所以,角AOE=角CEO同理,角COB=角OCE因此,角COB=角OCE=角CEO=角AOE=角AOD相等的角对应的弦也相
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B
(1)CE=12OC*OC=CE*CE+OE*OEOE=OB-EB=OC-EB代入的OB=20AB=2*OB=40(2)没看到你的图
连接AO,OE=OD-ED=5-2=3AO=1/2CD=5在直角三角形AOE中根据勾股定理得到AE=4则AB=2AE=8
1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的
过O作OG⊥CD于G∵O为圆心,CD为弦,OG⊥CD∴CG=DG(弦的过圆心垂线平分弦)又∵AE⊥CD,BF⊥CD∴AE‖BF∴OA/OB=EG/FG(相似)又∵OA=OB∴EG=FG又∵CG=DG∴
连接OC∵AB为圆O的直径,弦CD⊥AB于E∴CE=½CD∵AB=20,EB=2∴OC=OB=10,OE=8∴OC²=CE²+OE²∴CE=√﹙100-64)=
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B