已知圆o1与o2相离,过点o1作圆o2的切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:58:32
1.因为AB垂直CD所以角ABC=角ABD=直角,直角所对弦为直径.2.连接CE与DF,角EBC与角DBF为对顶角所以相等,由同一圆弧所对圆周角相等可知,角EBC=角EAC,角FBD=角FAD所以角C
连接BD和AE!角DAE=DBC(同弧所对的角相等)△BCD相似△CAE设AD=X则BC=2XBE=4X根据相似三角形定理有CD/CE=BC/AC即(6+X)/6X=2X/6解得X=1.5所以BE=6
证:∵AB为直径∴∠ACB=90º又∠BDO₂=90º∴O₂D‖AC∴AB/AC=BO₂/O₂D又∵O₂D为小圆半径=A
(I)证明:连接AB,∵AC是⊙O1的切线,∴∠BAC=∠D,又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC.(II)∵PA是⊙O1的切线,PD是⊙O1的割线,∴PA2=PB•PD,∴62=PB•(P
因为AC为圆O2的切线,所以,∠CAB=∠AFB又因为∠BAC=∠CEB所以∠CEB=∠AFB所以CE∥AF再问:为什么∠CAB=∠AFB用做什么辅助线吗再答:弦切角等于所含弧上的圆周角
如果是选择或者填空,教你个方法,你连接O1PO2,这条直线也是符合要求的APB.易得两圆半径之比为3:2所以结果为3:2如果是证明题,可以稍微花几步证明O1P:PO2=AP:BP(相似三角形)
连接AB,在⊙O2中,∵AC是直径∴∠ABC=90°,∠ABE=90°在⊙O1中,连接AE和ED∵∠ABE=90°∴AE是直径,O1点在AE上,∠EDA=90°连接CO1,∵O1点在⊙O2上∴∠CO1
根据C所外位置情况可分为两种情况,C在弧O₁A和 弧O₁B证明:(1)C在弧O₁A上时廷长O₁C交AD于F点;连接AO₁
证明:∵AB⊥CD∴AC和AD都是直径∵∠E=∠C,∠D=∠F∴△AEF∽△ACD∴AE/AF=AC/AD因为AC,AD为两个圆的直径,是定值∴AE/AF是一个常数
证明:(1)连接AC,AD∵B在⊙O1上且AB⊥BC∴∠ABC=90°∴AC是⊙O1的直径同理可得AD是⊙O2的直径(2)∠1=∠2∠1=∠3∠2=∠4∴∠3=∠4∴∠3+∠5=∠4+∠5∴∠CAD=
证明:(1)∵CD⊥AB∴∠ABC=90º∴AC是圆O1的直径【直径所对的圆周角为直角】(2)∵CD⊥AB∴∠ABD=90º∴AD为圆O2的直径∵AC=AD∴①O1C=O2B【=&
证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=
证明:作两圆的公切线PM则∠MPE=∠PCE=∠A∵∠PEC=∠PDA∴△PAD∽△PCE∴PA/PC=PD/PE∴PA*PE=PC*PD再问:嗯,公切线?再答:两个圆的公共切线再问:切线画在哪里?再
第一个问题:∵PA切⊙O1于A,∴∠BAC=∠ADE.∵A、B、C、E共圆,∴∠BAC=∠CED.由∠BAC=∠ADE、∠BAC=∠CED,得:∠ADE=∠CED,∴AD∥EC,∴PA/PC=PD/P
连接O1M、O1B、O2N∴四边形AO1BO2是锐角为60°的菱形∴∠P=180°-(∠PMN+∠PNM)=180°-[(90°-∠O1MB)+(90°-∠O2NB)]=∠O1MB+∠O2NB=∠O1
连接AB,根据圆的内接四边形的性质,易证得∠F+∠E=180°,因此CE∥DF,即四边形CDFE是平行四边形;由平行四边形的性质即可证得CE=DF.连接AB;∵∠CAB=∠F,CD∥EF;∴∠C+∠E
证明:过P作两圆的公切线PM交DC延长线于M,连BC,因为PM是切线,所以∠MPA=∠PDB,因为CD是切线,所以∠MPA=∠MAP,所以∠MAP=∠PDB,因为∠MAP=∠DAB,所以∠PDB=∠D
证明:△ACD为等腰三角形.(1)∵⊙O1,⊙O2为等圆,AB=AB,∴AmB=AnB∴∠C=∠D,∴AC=AD,∴△ACD是等腰三角形.(2)当⊙O1过O2点时(或⊙O2过O1点),△ACD为等边三
连两圆的公共弦AB角CEF=角CAB(同弧或等弧所对圆周角相等:弧BC)角CAB=角BFD(同弧或等弧所对圆周角相等:弧BD)所以角CEF=角BFD故:EC‖DF(内错角相等,二直线平行)
AB⊥O1O2O1O2=1/2AB=AO2=BO2∴O1O2=√2/2×AO1=2√2即O2半径=2√2不知阴影是?