已知园O是三角形ABC的外接圆,AD是园O的直径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:08:06
解题思路:连接OC.根据圆周角定理求得∠AOC=2∠B,再根据等腰三角形的性质和三角形的内角和定理即可求解.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.Open
证明:连接BI,∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,弧BE=弧CE∴∠BAE=∠EBC∵∠BIE=∠BAI+∠ABI(三角形的外角等于与它不相邻的两个内角和),∠IBE=∠
题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3
首先这是个直角三角形,其次存在一点到三点的距离相等.再答:再问:������Ҫ���д���������再问:������Ҫ���д���������再答:���ˡ���������һ������ôѧ
sinB=1.8/3sinB=2/2R正弦定理得R=5/3
连接BI∵I是△ABC的内心∴∠BAI=∠CAI,∠ABI=∠CBI.弧BE=弧CE∴∠BAE=∠EBC∵∠BIE=∠BAI+∠ABI∠IBE=∠IBC+∠EBC∴∠EBI=∠EIB∴EB=EI
恩这个只需要正弦定理和三角形面积公式就可以解出来了.1a/sinA=b/sinB=c/sinC=2R a*b*c/8R3=sinAsinBsinC R为三角形外接圆半径2其中三角形面积为s=1/2ah
在三角形ABC形中,cosA=1/3.===>sinA=(2√2)/3.设外接圆半径为r,则由正弦定理知,2r=|BC|/sinA=2/[(2√2)/3]=3/√2.===>r=3/(2√2).===
证明:连OB,并延长OB交圆O于M,连MC,因为∠A和∠BMC所对的弧为BC所以∠A=∠BMC,因为∠A=∠CBD所以∠BMC=∠CBD因为BM是直径所以∠BCM=90°所以∠BMC+∠MBC=90°
角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)
角boc=55*2=110度.同弧所对圆心角是圆周角的二倍.再问:能详细点吗==表示生病了-没去学校再答:顶点在圆心的角,叫做圆心角。圆心角α的取值范围是0°
证明:∵AB为弦,CD为直径所在的直线且AB⊥CD,∴AD=BD,又∵CD=CD,∴△CAD≌△CBD,∴AC=BC;又∵E,F分别为AC,BC的中点,D为AB中点,∴DF=CE=12AC,DE=CF
证明:以E为圆心,以BC长为半径画弧交元O于F点.连接EF,FA.则:EF=BC,∠FAE=90°所以:∠EAF=∠DAC (弦相等,弦所对的圆周角相等)所以:RT△ADC∽RT△EFA所以
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B
再问:最后看不清再答: 再答:这样呢再问:看清了
由正弦定理:a/sinA=2r,得2/sin60°=2r,r=(2/3)√3
∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过
过O作OH⊥BC于H,则BH=CH(垂径分弦),∵DF⊥BC,AE⊥BC,∴DF∥OH∥AE,∴EH/FH=AO/BO=1(平行线分线段成比例),∴EH=FH,∴BH-FH=CH-EH,即BF=EC.
怎么说呢,很难说.我先口述,如果看不懂就发信息给我.内心即为角平分线交点所以∠BAO=∠OAC,角相等,所以弧BD=弧CD,等弧对等弦,所以BD=CD连接BO因为BO为∠B的角平分线,所以∠CBO=∠
正三角形吗再问:已补图。你看看吧再答:没有看到图